地球信息科学学报 ›› 2013, Vol. 15 ›› Issue (6): 846-853.doi: 10.3724/SP.J.1047.2013.00846

• 地理模型与算法 • 上一篇    下一篇

网络Voronoi图启发的粒子群空间优化建模

谢顺平, 冯学智, 都金康   

  1. 南京大学江苏省地理信息技术重点实验室, 南京大学地理与海洋科学学院地理信息科学系, 南京 210046
  • 收稿日期:2013-11-20 修回日期:2013-12-06 出版日期:2013-12-25 发布日期:2013-12-25
  • 作者简介:谢顺平(1957-),男,南京市人,博士,教授级高级工程师,主要从事地理信息系统理论与应用、空间分析模型、智能空间优化等研究。E-mail:xiesp@nju.edu.cn
  • 基金资助:

    国家自然科学基金项目(41371044、40401046)。

Network Voronoi Diagram Heuristic-based Particle Swarm Continuous Spatial Optimization Modeling

XIE Shunping, FENG Xuezhi, DU Jinkang   

  1. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Department of Geographic Information Science, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210046, China
  • Received:2013-11-20 Revised:2013-12-06 Online:2013-12-25 Published:2013-12-25

摘要:

城市化区域多设施空间优化建模是一项实用的关键技术,可为城市公共资源均衡优化配置和空间决策提供支持。本文提出了网络Voronoi图启发的多设施选址粒子群空间优化建模方法,分别给出了基于常规Voronoi图启发的p-中值选址模型和最大覆盖选址模型,以及基于网络Voronoi面启发的p-中值选址模型和最大覆盖选址模型。模型采用Voronoi图定量提取设施功能覆盖和服务范围内的需求,并通过最小化重叠覆盖启发空间优化最大化覆盖分布的需求。p-中值选址模型考虑了需求随路径距离衰减的因素,最大覆盖选址模型顾及了设施对最大覆盖半径范围以内需求的完全覆盖,以及对以外区域的部分衰减覆盖。在空间优化粒子群算法中融入遗传进化机制和常规Voronoi图模拟的粒子动态邻域结构,提高了算法的全局搜索和优化性能。通过对实验区多设施进行的p-中值选址空间优化实验和最大覆盖选址空间优化实验,验证了本文提出的模型、方法和算法的有效性,可应用于城市化区域的空间优化决策支持。

关键词: 空间优化建模, 图启发式, 多设施选址, 粒子群算法, 网络Voronoi图

Abstract:

Spatial optimization modeling for multi facilities in urbanized area is a practical and key technique, and it can provide balance configuration optimization and spatial decision support for urban public resource. A method of particle swarm spatial optimization modeling for multi facilities location based on network Voronoi diagram heuristic is proposed in this paper, in which we presented respectively some p-median location models and maximal covering location models by using ordinary Voronoi diagram heuristic and network Voronoi diagram heuristic. Those models can quantitatively extract the demands coved by the function and service of facilities through the Voronoi diagrams, and inspire spatial optimization to maximize the coverage for distributed demands by minimizing overlapped coverage. The proposed p-median location model considers the factor of demand attenuation with path distance, and the proposed maximal covering model takes it into account that facility's service provides full coverage for the demands within maximal coverage radius and partial attenuation coverage for the demands without maximal coverage radius. The genetic evolution mechanism and the dynamic neighborhood structure of particles simulated by ordinary Voronoi diagram are integrated in the particle swarm spatial optimization to improve global search and optimization performance of the algorithm. Through the research of spatial optimization configuration experiments for multi facilities in experimental city, the proposed method has been verified to be the effective and practical, it can be applied for the spatial location optimization decision in urbanized area.

Key words: Network Voronoi Diagram, Multi-facilities Location, Particle Swarm Optimization, Spatial Optimization Modeling, Diagram Heuristic