地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (5): 708-717.doi: 10.3724/SP.J.1047.2016.00708
收稿日期:
2015-12-16
修回日期:
2016-03-31
出版日期:
2016-05-10
发布日期:
2016-05-10
作者简介:
作者简介:黄启厅(1983-),男,广西南宁人,博士生,研究方向为遥感信息提取。E-mail:
基金资助:
HUANG Qiting1,2,*(), QIN Zelin3, ZENG Zhikang3
Received:
2015-12-16
Revised:
2016-03-31
Online:
2016-05-10
Published:
2016-05-10
Contact:
HUANG Qiting
摘要:
为了解决多云雨地区遥感数据时空覆盖缺失的问题,以满足对地块尺度作物种植信息日益迫切的应用需求,本文在遥感图谱认知理论框架下发展了一种基于多星数据协同的地块尺度作物识别与面积估算方法。首先,基于米级高分辨率影像提取农田地块对象;其次,通过对多源中分辨率时序影像的有效化处理和指数计算,获取“碎片化”的高时空覆盖有效数据,并以地块对象为单元构建时间序列;然后,在时序分析基础上,建立多维特征空间,结合作物生长物候特征,构建决策树模型进行作物分类识别与面积计算;最后,以湖南省宁远县为研究区开展了水稻种植信息的提取实验。结果表明:本文方法可在农田地块尺度下实现不同水稻类型的准确识别及其种植面积的精细提取,早、中、晚稻的用户精度分别可达94.33%、90.76%和95.95%,总体分类精度为92.51%,Kappa系数为0.90;早、中、晚稻面积提取精度分别为93.37%、91.23%和95.42%。试验结果证明了本文方法的有效性,为其他作物种植信息的精细提取提供了借鉴。
黄启厅, 覃泽林, 曾志康. 多星数据协同的地块尺度作物分类与面积估算方法研究[J]. 地球信息科学学报, 2016, 18(5): 708-717.DOI:10.3724/SP.J.1047.2016.00708
HUANG Qiting,QIN Zelin,ZENG Zhikang. Study on the Crop Classification and Planting Area Estimation at Land Parcel Scale Using Multi-sources Satellite Data[J]. Journal of Geo-information Science, 2016, 18(5): 708-717.DOI:10.3724/SP.J.1047.2016.00708
表1
GF-WVF1与其它传感器的NDVI回归模型
传感器 | 拟合方程 | R2 | RMSE |
---|---|---|---|
GF1-WFV2 | Y=0.7690X+0.1699 | 0.8977 | 0.0195 |
GF1-WFV3 | Y=0.8233X+0.1285 | 0.6362 | 0.0416 |
GF1-WFV4 | Y=0.9195X+0.0446 | 0.7975 | 0.0339 |
HJ1A-CCD1 | Y=1.0673X+0.0256 | 0.9059 | 0.0209 |
HJ1A-CCD2 | Y=1.0858X+0.0512 | 0.9018 | 0.0211 |
HJ1B-CCD1 | Y=0.9157X+0.1765 | 0.7275 | 0.0194 |
HJ1B-CCD2 | Y=0.8469X+0.1928 | 0.8064 | 0.0328 |
Landsat8-OLI | Y=0.9018X-0.0387 | 0.7498 | 0.0683 |
表2
研究采用的影像信息
时间 | 中心经纬度 | 传感器 | 时间 | 中心经纬度 | 传感器 |
---|---|---|---|---|---|
2014-03-17 | E113.1_N25.6 | GF1_WFV3 | 2014-09-21 | E113.2_N26.3 | GF1_WFV1 |
2014-03-26 | E111.0_N24.6 | GF1_WFV4 | 2014-09-25 | E111.8_N24.7 | GF1_WFV1 |
2014-03-26 | E110.5_N25.2 | GF1_WFV4 | 2014-09-26 | E110.9_N25.9 | GF1_WFV1 |
2014-04-04 | E112.8_N27.1 | HJ1B-CCD2 | 2014-10-04 | E112.8_N25.6 | GF1_WFV3 |
2014-04-04 | E111.0_N26.8 | HJ1B-CCD2 | 2014-10-08 | E111.6_N25.9 | GF1_WFV2 |
2014-04-14 | E110.9_N27.4 | HJ1A-CCD2 | 2014-10-16 | E110.8_N26.3 | GF1_WFV1 |
2014-05-01 | E111.3_N25.9 | GF1_WFV2 | 2014-10-16 | E112.8_N25.9 | GF1_WFV2 |
2014-05-01 | E113.1_N25.6 | GF1_WFV3 | 2014-10-24 | E111.6_N24.6 | GF1_WFV1 |
2014-06-13 | E110.6_N25.2 | HJ1B-CCD2 | 2014-10-24 | E111.9_N26.3 | GF1_WFV1 |
2014-06-13 | E110.8_N26.3 | HJ1A-CCD1 | 2014-11-14 | E111.1_N25.9 | GF1_WFV2 |
2014-06-15 | E112.0_N25.9 | GF1_WFV2 | 2014-11-18 | E110.8_N26.3 | HJ1B-CCD1 |
2014-07-10 | E112.1_N25.6 | GF1_WFV3 | 2014-11-22 | E112.2_N25.9 | GF1_WFV2 |
2014-07-18 | E111.6_N25.9 | GF1_WFV2 | 2012-10-01 | E111.8 _N25.5 | ZY3_NAD |
2014-07-30 | E111.1_N24.6 | GF1_WFV1 | 2012-10-01 | E111.8 _N25.5 | ZY3_MUX |
2014-07-30 | E111.5_N26.3 | GF1_WFV1 | 2012-10-01 | E111.9 _N25.9 | ZY3_NAD |
2014-08-03 | E111.7_N24.6 | GF1_WFV1 | 2012-10-01 | E111.9 _N25.9 | ZY3_MUX |
2014-08-03 | E112.1_N26.3 | GF1_WFV1 | 2013-08-02 | E112.2_N 25.1 | ZY3_NAD |
2014-08-29 | E109.9_N26.8 | HJ1A-CCD1 | 2013-08-02 | E112.2_N 25.1 | ZY3_MUX |
2014-09-01 | E112.2_N25.9 | GF1_WFV2 | 2013-08-02 | E112.3_N 25.5 | ZY3_NAD |
2014-09-04 | E112.0_N26.4 | HJ1B-CCD1 | 2013-08-02 | E112.3_N 25.5 | ZY3_MUX |
2014-09-21 | E112.8_N24.6 | GF1_WFV1 |
[1] |
Xiao X, Boles S, Liu J, et al.Mapping paddy rice agriculture in southern China using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2005,95(4):480-492.
doi: 10.1016/j.rse.2004.12.009 |
[2] |
Xiao X M, Boles S, Frolking S, et al.Mapping paddy rice agriculture in south and southeast Asia using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2006,100(1):95-113.
doi: 10.1016/j.rse.2005.10.004 |
[3] |
Kuenzer C, Knauer K.Remote sensing of rice crop areas[J]. International Journal of Remote Sensing, 2013,34(6):2101-2139.
doi: 10.1080/01431161.2012.738946 |
[4] | Gumma M K, Thenkabail P S, Maunahan A, et al.Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500m data for the year 2010[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,91:98-113. |
[5] |
Hill M J, Donald G E.Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series[J]. Remote Sensing of Environment, 2003,84(3):367-384.
doi: 10.1016/S0034-4257(02)00128-1 |
[6] |
Atzberger C, Rembold F.Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and neural nets[J].Remote Sensing, 2013,5(3):1335-1354.
doi: 10.3390/rs5031335 |
[7] |
Potgieter A B, Apan A,Dunn P, et al.Estimating crop area using seasonal time series of enhanced vegetation index from MODIS satellite imager[J]. Australian Journal of Agricultural Research, 2007,58(4):316-325.
doi: 10.1071/AR06279 |
[8] |
Zheng B J, Campbell J B, de Beurs K M. Remote sensing of crop residue cover using multi-temporal Landsat imagery[J]. Remote Sensing of Environment, 2012,177:99-183.
doi: 10.1016/j.rse.2011.09.016 |
[9] |
Jia K, Wu B F, Li Q Z.Crop classification using HJ satellite multispectral data in the north China plain[J]. Journal of Applied Remote Sensing, 2013,7(1):287-297.
doi: 10.1117/1.JRS.7.073576 |
[10] |
Pan Y Z, Li L, Zhang J S, et al.Winter wheat area estimation from MODIS-EVI time series data using the crop proportion phenology index[J] . Remote Sensing of Environment, 2012,119:232-242.
doi: 10.1016/j.rse.2011.10.011 |
[11] |
Wardlow B D, Egbert S L, Kastens J H.Analysis of time-series MODIS 250m vegetation index data for crop classification in the U.S. central great plains[J]. Remote Sensing of Environment, 2007,108(3):290-310.
doi: 10.1016/j.rse.2006.11.021 |
[12] |
Ward B D, Egbert S L.Large-area crop mapping using time-series MODIS 250m NDVI data: an assessment for the U.S. Central great plains[J]. Remote Sensing of Environment, 2008,112(3):1096-1116.
doi: 10.1016/j.rse.2007.07.019 |
[13] | Zhong L H, Gong P, Biging G S.Efficient corn and soybean mapping with temporal extendibility: a multi-year experiment using Landsat Imagery[J]. Remote Sensing of Environment, 2014,140:1-13. |
[14] | Dong J W, Xiao X M, Kou W L, et al.Tracking the dynamics of paddy rice planting area in 1986-2010 through time series Landsat images and phenology-based algorithms[J]. Remote Sensing of Environment, 2015,160:99-113. |
[15] |
骆剑承,周成虎,沈占锋,等.遥感信息图谱计算的理论方法研究[J].地球信息科学学报,2009,11(5):664-669.
doi: 10.3969/j.issn.1560-8999.2009.05.017 |
[ Luo J C, Zhou C H, Shen Z F, et al.Theoretic and methodological review on sensor information tupu computation[J].Journal of Geo-information Science, 2009,11(5):664-669. ]
doi: 10.3969/j.issn.1560-8999.2009.05.017 |
|
[16] | 周伟,关键,姜涛,等.多光谱遥感影像中云影区域的检测与修复[J].遥感学报,2012,16(1):137-142. |
[ Zhou W, Guan J, Jiang T, et al.Automaticdetection and repairing of cloud and shadow regions in multi-spectral remote sensing images[J]. Journal of Remote Sensing, 2012,16(1):132-142. ] | |
[17] | Steven M D, Malthus T J, Baret F, et al.Inter-calibration of vegetation indices from different sensor systems[J].Remote Sensing of Environment, 2003,88(12):412-422. |
[18] | 张宏斌,杨桂霞,李刚,等.基于MODIS NDVI和NOAA NDVI数据的空间尺度转换方法研究——以内蒙古草原区为例[J].草业科学,2009,26(10):39-45. |
[ Zhang H B, Yang G X, Li G.Study on the MODIS NDVI and NOAA NDVI based spatial scaling method-a case study in Inner Mongolia[J].Pratacaltural Science, 2009,26(10):39-45. ] | |
[19] |
张焕雪,曹新,李强子,等.基于多时相环境星NDVI时间序列的农作物分类研究[J].遥感技术与应用,2015,30(2):304-311.
doi: 10.11873/j.issn.1004-0323.2015.2.0304 |
[ Zhang H X, Cao X, Li Q Z, et al.Research on crop identification using multi-temporal NDVI HJ images[J]. Remote Sensing Technology and Application, 2015,30(2):304-311. ]
doi: 10.11873/j.issn.1004-0323.2015.2.0304 |
|
[20] |
张峰,吴炳方,刘成林,等.利用时序植被指数监测作物物候的方法研究[J].农业工程学报,2004,20(1):155-159.
doi: 10.3321/j.issn:1002-6819.2004.01.038 |
[ Zhang F, Wu B F, Liu C L, et al.Methods of monitoring crop phonological stages using time series of vegetation indicator[J].Transactions of the Chinese Society of Agricultural Engineering, 2004,20(1):155-159. ]
doi: 10.3321/j.issn:1002-6819.2004.01.038 |
|
[21] |
Jonsson P, Eklundh L.Seasonalityextraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(8):1824-1832.
doi: 10.1109/TGRS.2002.802519 |
[22] |
李治,杨晓梅,梦樊,等.物候特征辅助下的随机森林宏观尺度土地覆盖分类方法研究[J].遥感信息,2013,28(6):48-55.
doi: 10.3969/j.issn.1000-3177.2013.06.008 |
[ Li Z, Yang X M, Meng F, et al.LULC classification based on random forest with aid of phonological features[J]. Remote Sensing Information, 2013,28(6):48-55. ]
doi: 10.3969/j.issn.1000-3177.2013.06.008 |
[1] | 范兰馨, 吴艳红, 迟皓婧, 郑思齐, 闫家恒, 任永康, 孙忠华. 暖湿化下西北地区水体变化趋势遥感监测[J]. 地球信息科学学报, 2023, 25(9): 1842-1854. |
[2] | 邢子瑶, 董芯蕊, 昝糈莉, 杨帅, 黄梓焓, 刘哲, 张晓东. 融合VGI和遥感等多源数据的洪涝范围提取与模拟方法[J]. 地球信息科学学报, 2023, 25(9): 1869-1881. |
[3] | 张俊瑶, 杨晓梅, 王志华, 杨海坤, 张博淳, 万庆, 雷梅. 绿色发展理念视角下内蒙古煤矿区格局演变分析[J]. 地球信息科学学报, 2023, 25(8): 1655-1668. |
[4] | 曹煜, 方秀琴, 杨露露, 蒋心远, 廖美玉, 任立良. 基于随机森林的西辽河流域CCI土壤湿度降尺度研究[J]. 地球信息科学学报, 2023, 25(8): 1669-1681. |
[5] | 张寒博, 李彤, 李晓芳, 邓滢, 邓应彬, 荆文龙, 胡义强, 李勇, 杨骥. 无人机遥感和GWR结合的水华短时预测方法[J]. 地球信息科学学报, 2023, 25(8): 1682-1698. |
[6] | 林娜, 何静, 王斌, 唐菲菲, 周俊宇, 郭江. 结合植被光谱特征与Sep-UNet的城市植被信息智能提取方法[J]. 地球信息科学学报, 2023, 25(8): 1717-1729. |
[7] | 吴敏, 张明达, 李盼盼, 张勇健. 面向多源遥感影像数据的溯源模型研究[J]. 地球信息科学学报, 2023, 25(7): 1325-1335. |
[8] | 杨颖频, 吴志峰, 黄启厅, 骆剑承, 吴田军, 董文, 胡晓东, 肖文菊. 协同遥感与统计数据的粤西甘蔗种植分布提取及时空分析[J]. 地球信息科学学报, 2023, 25(5): 1012-1026. |
[9] | 刘潇, 刘智, 林雨准, 王淑香, 左溪冰. 面向遥感影像场景分类的类中心知识蒸馏方法[J]. 地球信息科学学报, 2023, 25(5): 1050-1063. |
[10] | 衡雪彪, 许捍卫, 唐璐, 汤恒, 许怡蕾. 基于改进全卷积神经网络模型的土地覆盖分类方法研究[J]. 地球信息科学学报, 2023, 25(3): 495-509. |
[11] | 高鹏飞, 曹雪峰, 李科, 游雄. 融合多元稀疏特征与阶层深度特征的遥感影像目标检测[J]. 地球信息科学学报, 2023, 25(3): 638-653. |
[12] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[13] | 陈凯, 雷少华, 代文, 王春, 刘爱利, 李敏. 基于开源数据和条件生成对抗网络的地形重建方法[J]. 地球信息科学学报, 2023, 25(2): 252-264. |
[14] | 饶子昱, 卢俊, 郭海涛, 余东行, 侯青峰. 利用视角转换的跨视角影像匹配方法[J]. 地球信息科学学报, 2023, 25(2): 368-379. |
[15] | 王龙号, 蓝朝桢, 姚富山, 侯慧太, 武蓓蓓. 多源遥感影像深度特征融合匹配算法[J]. 地球信息科学学报, 2023, 25(2): 380-395. |
|