[1] |
Torteeka P, Chundi X I U. Indoor positioning based on wi-fi fingerprint technique using fuzzy k-nearest neighbor[C]. Applied Sciences and Technology (IBCAST), 2014 11th International Bhurban Conference on. IEEE, 2014:461-465.
|
[2] |
Youssef M, Agrawala A.The Horus WLAN location determination system[C]. Proceedings of the 3rd international conference on Mobile systems, applications, and services. ACM, 2005:205-218.
|
[3] |
Sjöberg M, Koskela M, Viitaniemi V, et al. Indoor location recognition using fusion of SVM-based visual classifiers[C]. Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop on. IEEE, 2010:343-348.
|
[4] |
Wu K, Xiao J, Yi Y, et al. Fila: Fine-grained indoor localization[C]. INFOCOM, 2012 Proceedings IEEE. IEEE, 2012:2210-2218.
|
[5] |
Sen S, Radunovic B, Choudhury R R, et al. You are facing the Mona Lisa: spot localization using PHY layer information[C]. Proceedings of the 10th international conference on Mobile systems, applications, and services. ACM, 2012:183-196.
|
[6] |
Fang S H, Lin T N.Principal component localization in indoor WLAN environments[J]. Mobile Computing, IEEE Transactions on, 2012,11(1):100-110.
doi: 10.1109/TMC.2011.30
|
[7] |
Zheng V W, Xiang E W, Yang Q, et al. Transferring Localization Models over Time[C]. AAAI. 2008:1421-1426.
|
[8] |
Sun Z, Chen Y Q, Qi J, et al. Adaptive localization through transfer learning in indoor wi-fi environment[C]. Machine Learning and Applications, 2008. ICMLA'08. Seventh International Conference on. IEEE, 2008:331-336.
|
[9] |
Liu J F, Chen Y Q, Liu M J, et al. SELM: semi-supervisedELM with application in sparse calibrated location estimation[J]. Neurocomputing, 2011,74(16):2566-2572.
doi: 10.1016/j.neucom.2010.12.043
|
[10] |
刘军发,谷洋,陈益强,等.具有时效机制的增量式无线定位方法[J].计算机学报,2013,36(7):1448-1455.
doi: 10.3724/SP.J.1016.2013.01448
|
|
[ Liu J F, Gu Y, Chen Y Q, et al. Incremental Localization in WLAN Environment with Timeliness Management[J]. Chinese Journal of Computers, 2013,36(7):1448-1455. ]
doi: 10.3724/SP.J.1016.2013.01448
|
[11] |
Jiang X L, Liu J F, Chen Y Q, et al. Feature adaptive online sequential extreme learning machine for lifelong indoor localization[J]. Neural Computing and Applications,2016,27(1):215-225.
|
[12] |
Huang G B, Zhu Q Y, Siew C K.Extreme learning machine: a new learning scheme of feedforward neural networks[C]. Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on. IEEE, 2004,2:985-990.
|
[13] |
Huang G B, Zhu Q Y, Siew C K.Extreme learning machine: theory and applications[J]. Neurocomputing, 2006,70(1):489-501.
doi: 10.1016/j.neucom.2005.12.126
|
[14] |
Huang G B, Chen L, Siew C K.Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. Neural Networks, IEEE Transactions on, 2006,17(4):879-892.
doi: 10.1109/TNN.2006.875977
pmid: 16856652
|
[15] |
Rao C R, Mitra S K.Generalized inverse of matrices and its applications[M]. New York: Wiley, 1971.
|
[16] |
Serre D, Matrices: Theory and Applications[M]. New York: Springer, 2002.
|
[17] |
Chung, F R.Spectral graph theory[C]. Vol. 92. American Mathematical Soc, 1997.
|
[18] |
Belkin M, Matveeva I, Niyogi P.Regularization and semi-supervised learning on large graphs[C]. Proceedings of 17th Conference on Learning Theory(COLT), 2004,3120:624-638.
|
[19] |
Belkin M, Niyogi P, Sindhwani V.Manifold regularization: A geometric framework for learning from labeled and unlabeled examples[J]. Journal of machine learning research, 2006,7(11):2399-434.
doi: 10.1007/s10846-006-9077-x
|
[20] |
Reddi S J, Sra S, Poczos B, et al. Fast Incremental Method for nonconvex optimization[J]. arxiv preprint arxiv:2016:1603.06159.
|
[21] |
Ma R, Guo Q, Hu C, et al. An improved wi-fi indoor positioning algorithm by weighted fusion[J]. Sensors, 2015,15(9):1824-21843.
doi: 10.3390/s150921824
pmid: 26334278
|