地球信息科学学报 ›› 2017, Vol. 19 ›› Issue (10): 1382-1392.doi: 10.3724/SP.J.1047.2017.01382
收稿日期:
2017-05-24
修回日期:
2017-08-04
出版日期:
2017-10-20
发布日期:
2017-10-20
作者简介:
作者简介:方灿莹(1993-), 女, 福建漳州人, 硕士生, 主要从事城市化及其环境影响评价研究。E-mail:
基金资助:
FANG Canying1,2(), WANG lin1,3,*(
), XU Hanqiu1,2,3
Received:
2017-05-24
Revised:
2017-08-04
Online:
2017-10-20
Published:
2017-10-20
Contact:
WANG lin
摘要:
遥感红边指数与表征绿色植物生长状况的重要生化参数有密切的关系,是植被长势监测的重要因子。为寻找出最适用于城市草地生长状况监测的红边指数,本文基于Sentinel-2A数据,对比分析了不同红边指数在城市草地健康状况估算方面的差异。本文以福州市和厦门市的城市草地为例,在全面分析各种健康水平草地光谱响应特征差异的基础上,选取了6种与草地生化参数相关的红边指数,即红边位置REP、地面叶绿素指数MTCI、归一化差值红边指数NDRE1、新型倒红边叶绿素指数IRECI、红边叶绿素指数CIred-edge以及叶绿素吸收指数MCARI2,然后采用独立样本T检验及欧式距离对这6种红边指数在草地健康判别中的优劣进行了定量对比。结果表明:IRECI指数对草地健康状况最为敏感,该指数在不同健康等级草地的值域区间和均值都存在显著性差异,其判别总精度均大于85%;NDRE1和MCARI2指数次之,其他3个指数则难以判别草地的健康状况。因此,在基于Sentinel-2A影像的城市草地健康遥感判别中,推荐使用IRECI指数。
方灿莹, 王琳, 徐涵秋. 不同植被红边指数在城市草地健康判别中的对比研究[J]. 地球信息科学学报, 2017, 19(10): 1382-1392.DOI:10.3724/SP.J.1047.2017.01382
FANG Canying,WANG lin,XU Hanqiu. A Comparative Study of Different Red Edge Indices for Remote Sensing Detection of Urban Grassland Health Status[J]. Journal of Geo-information Science, 2017, 19(10): 1382-1392.DOI:10.3724/SP.J.1047.2017.01382
表1
Sentinel-2A影像多光谱波段主要参数信息
波段号 | 波段 | 中心波长/nm | 波段宽度/nm | 空间分辨率/m |
---|---|---|---|---|
1 | Coastal | 443 | 20 | 60 |
2 | Blue | 490 | 65 | 10 |
3 | Green | 560 | 35 | 10 |
4 | Red | 665 | 30 | 10 |
5 | Red edge | 705 | 15 | 20 |
6 | 740 | 15 | 20 | |
7 | 783 | 20 | 20 | |
8 | NIR-1 | 842 | 115 | 10 |
8b | NIR-2 | 865 | 20 | 20 |
9 | Water vapor | 945 | 20 | 60 |
10 | Cirrus | 1375 | 30 | 60 |
11 | MIR-1 | 1610 | 90 | 20 |
12 | MIR-2 | 2190 | 180 | 20 |
表2
红边指数及其计算公式
指数 | 计算公式 | 对应的Sentinel-2A波段 | 描述 | 参考文献 |
---|---|---|---|---|
REP | REP=705+35×(0.5×(ρ665+ ρ783)-ρ705)/(ρ740-ρ705) | B4、B7、B5、B6 | 红边范围内植被反射光谱曲线斜率最大的位置。当植物叶片的叶绿素含量增加时,REP向长波方向移动,反之则向短波方向移动[ | Guyot等[ |
MTCI | MTCI = (ρ753.75-ρ708.75)/(ρ708.75-ρ681.25) | B6、B5、B4 | 对植物叶片叶绿素含量较为敏感,其值越大代表叶绿素含量越高[ | Dash等[ |
NDRE1 | NDRE1= (ρ750-ρ705)/(ρ750+ρ705) | B6、B5 | NDRE1是用红边的峰和谷来代替传统NDVI中的红光和近红外波段,可用于估算植物叶面积指数和叶绿素含量[ | Gitelson等[ |
IRECI | IRECI = (ρ783-ρ665)/(ρ705/ρ740) | B7、B4、B5、B6 | 该指数与植物冠层叶绿素含量和叶面积指数具有很好的相关关系,可定量表征植物的叶绿素含量[ | Frampton等[ |
CIred-edge | CI red-edge= (ρ750-800/ρ690-725)-1 | B7、B5 | 该指数与植物叶绿素,氮素含量具有显著的线性关系[ | Gitelson等[ |
MCARI2 | MCARI 2= ((ρ750-ρ705)-0.2× (ρ750-ρ550)) ×(ρ750/ρ705) | B6、B5、B3 | 该指数对植物中的叶绿素含量较为敏感,其值越大表示叶绿素含量越高[ | Wu等[ |
表3
不同健康等级下红边指数的p值
p值 | REP | MTCI | NDRE1 | IRECI | CIred-edge | MCARI2 | |
---|---|---|---|---|---|---|---|
福州市 | 好-中 | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** |
好-差 | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** | |
中-差 | 0.174 | 0.011* | 0.000** | 0.000** | 0.013* | 0.000** | |
厦门市 | 好-中 | 0.001** | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** |
好-差 | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** | |
中-差 | 0.012* | 0.016* | 0.000** | 0.000** | 0.000** | 0.000** |
表4
欧式距离统计
红边指数 | 好-中 | 排序 | 中-差 | 排序 | 好-差 | 排序 | 总欧式距离 | 综合排序 | |
---|---|---|---|---|---|---|---|---|---|
福州市 | IRECI | 2.97 | 1 | 2.11 | 1 | 4.49 | 1 | 9.57 | 1 |
NDRE1 | 2.43 | 3 | 2.01 | 2 | 4.37 | 2 | 8.81 | 2 | |
MCARI2 | 2.46 | 2 | 1.91 | 3 | 3.67 | 3 | 8.04 | 3 | |
CIred-edge | 1.13 | 5 | 0.33 | 4 | 1.47 | 4 | 2.93 | 4 | |
MTCI | 1.23 | 4 | 0.29 | 5 | 1.26 | 5 | 2.78 | 5 | |
REP | 1.12 | 6 | 0.18 | 6 | 1.07 | 6 | 2.37 | 6 | |
厦门市 | IRECI | 1.49 | 1 | 1.93 | 1 | 2.71 | 2 | 6.13 | 1 |
MCARI2 | 1.35 | 2 | 1.45 | 2 | 2.64 | 3 | 5.44 | 2 | |
NDRE1 | 1.32 | 3 | 1.29 | 3 | 2.81 | 1 | 5.42 | 3 | |
CIred-edge | 1.29 | 4 | 1.29 | 4 | 2.32 | 4 | 5.00 | 4 | |
REP | 0.88 | 5 | 0.27 | 5 | 1.06 | 5 | 2.21 | 5 | |
MTCI | 0.82 | 6 | 0.26 | 6 | 1.01 | 6 | 2.09 | 6 |
[1] |
李西,王丽华,刘尉,等.三种暖季型草坪草对二氧化硫抗性的比较[J].生态学报,2014,34(5):1189-1197.
doi: 10.5846/stxb201210191454 |
[ Li X, Wang L H, Liu W, et al.Comparison study of sulfur dioxide resistance of three warm-season turf grasses[J]. Acta Ecologica Sinica, 2014,34(5):1189-1197. ]
doi: 10.5846/stxb201210191454 |
|
[2] | 王巧环,陈卫平,王效科,等.城市绿化草坪再生水灌溉对地下水水质影响研究[J].环境科学,2012,33(12):4127-4132. |
[ Wang Q H, Chen W P, Wang X K, et al.Impacts of reclaimed water irrigation of urban lawn on groundwater quality[J]. Environmental Science, 2012,33(12):4127-4132. ] | |
[3] |
李荣. 城市草坪种易养难解决草害、虫害可降低养护成本[J].草业科学,2003,20(9):73.
doi: 10.3969/j.issn.1001-0629.2003.09.039 |
[ Li R.Easy to plant the urban grasslands but difficult to grow. Solving grass damage, insect pests can reduce maintenance costs[J]. Pratacultural Science, 2003,20(9):73. ]
doi: 10.3969/j.issn.1001-0629.2003.09.039 |
|
[4] | 胡秀娟,徐涵秋,郭燕滨,等.水土流失区生态修复后植被健康的遥感判别[J].应用生态学报,2017,28(1):250-256. |
[ Hu X J, Xu H Q, Guo Y B, et al.Remote sensing detection of vegetation health status after ecological restoration in soil and water loss region[J]. Chinese Journal of Applied Ecology, 2017,28(1):250-256. ] | |
[5] |
Seager S, Turner E L, Schafer J, et al.Vegetation's red edge: A possible spectroscopic biosignature of extraterrestrial plants. Astrobiology, 2005,5(3):372-390.
doi: 10.1089/ast.2005.5.372 pmid: 15941381 |
[6] |
Kanke Y, Tubaña B, Dalen M, et al.Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields[J]. Precision Agriculture, 2016,17(5):507-530.
doi: 10.1007/s11119-016-9433-1 |
[7] |
Cho M A, Debba P, Mutanga O, et al.Potential utility of the spectral red-edge region of sumbandilasat imagery for assessing indigenous forest structure and health[J]. International Journal of Applied Earth Observations & Geoinformation, 2012,16(1):85-93.
doi: 10.1016/j.jag.2011.12.005 |
[8] |
Ramoelo A, Cho M A, Mathieu R, et al.Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2015,43:43-54.
doi: 10.1016/j.jag.2014.12.010 |
[9] |
Delegido J, Verrelst J, Meza C M, et al.A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems[J]. European Journal of Agronomy, 2013,46:42-52.
doi: 10.1016/j.eja.2012.12.001 |
[10] |
贺可勋,赵书河,来建斌,等.水分胁迫对小麦光谱红边参数和产量变化的影响[J].光谱学与光谱分析,2013,33(8):2143-2147.
doi: 10.3964/j.issn.1000-0593(2013)08-2143-05 |
[ He K X, Zhao S H, Lai J B, et al.Effects of water stress on red-edge parameters and yield in wheat cropping[J]. Spectroscopy and Spectral Analysis, 2013,33(8):2143-2147. ]
doi: 10.3964/j.issn.1000-0593(2013)08-2143-05 |
|
[11] | 秦占飞,常庆瑞,申健,等.引黄灌区水稻红边特征及SPAD高光谱预测模型[J].武汉大学学报·信息科学版,2016,41(9):1168-1175. |
[ Qin Z F, Chang Q R, Shen J, et al.Red edge characteristics and SPAD estimation model using hyperspectral data for rice in Ningxia irrigation zone[J]. Geomatics and Information Science of Wuhan University, 2016,41(9):1168-1175. ] | |
[12] |
Dash J, Curran P J.The MERIS terrestrial chlorophyll index[J]. International Journal of Remote Sensing, 2004,25(23):5403-5413.
doi: 10.1080/0143116042000274015 |
[13] |
Gitelson A, Merzlyak M N.Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L and Acer platanoides L leaves Spectral features and relation to chlorophyll estimation[J]. Journal of Plant Physiology, 1994,143(3):286-292.
doi: 10.1016/S0176-1617(11)81633-0 |
[14] |
Wu C, Niu Z, Tang Q, et al.Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J]. Agricultural and forest meteorology, 2008,148(8):1230-1241.
doi: 10.1016/j.agrformet.2008.03.005 |
[15] |
刘佳,王利民,滕飞,等. RapidEye卫星红边波段对农作物面积提取精度的影响[J].农业工程学报,2016,32(13):140-148.
doi: 10.11975/j.issn.1002-6819.2016.13.020 |
[ Liu J, Wang L M, Teng F, et al.Impact of red-edge waveband of RapidEye satellite on estimation accuracy of crop planting area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(13):140-148. ]
doi: 10.11975/j.issn.1002-6819.2016.13.020 |
|
[16] |
Vincini M, Amaducci S, Frazzi E.Empirical estimation of leaf Chlorophyll density in winter wheat canopies using Sentinel-2 spectral resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(6):3220-3235.
doi: 10.1109/TGRS.2013.2271813 |
[17] |
Immitzer M, Vuolo F, Atzberger C.First experience with Sentinel-2 data for crop and tree species classifications in central Europe[J]. Remote Sensing, 2016,8(3):1-27.
doi: 10.3390/rs8030166 |
[18] | 郑阳,吴炳方,张淼. Sentinel-2数据的冬小麦地上干生物量估算及评价[J].遥感学报,2017,21(2):318-328. |
[ Zheng Y, Wu B F, Zhang M.Estimating the aboveground biomass of winter wheat using the Sentinel-2 data[J]. Journal of Remote Sensing, 2017,21(2):318-328. ] | |
[19] | ESA. Sentinel-2 User Handbook [EB/OL]. (2015-07-24) [2017-04-08]. |
[20] | ESA. Sentinel-2 MSI - Level-2A Prototype Processor Installation and User Manual [EB/OL]. (2016-04-13) [2017-04-08]. . |
[21] | ESA. Sentinel-2 technical guides [EB/OL].[2017-04-08]. https://sentinels.copernicus.eu/web/sentinel/technical-guid-es/sentinel-2-msi. |
[22] |
Gausman H W, Allen W A, Cardenas R.Reflectance of cotton leaves and their structure[J]. Remote Sensing of Environment, 1969,1(1):19-22.
doi: 10.1016/S0034-4257(69)90055-8 |
[23] |
Horler D N H, Dockray M, Barber J. The red edge of plant leaf reflectance[J]. International Journal of Remote Sensing, 1983,4(2):273-288.
doi: 10.1080/01431168308948546 |
[24] |
Rock B N, Vogelmann J E, Williams D L, et al.Remote detection of forest damage[J]. BioScience, 1986,36(7):439-445.
doi: 10.2307/1310339 |
[25] | Guyot G, Baret F.Utilisation de la haute resolution spectrale pour suivre l'etat des couverts vegetaux[C]// Proceedings of the 4th international conference on spectral signatures of objects in remote sensing. ESA SP-287, Assois, France: 1988:279-286. |
[26] |
Frampton W J, Dash J, Watmough G, et al.Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation[J]. ISPRS journal of photogrammetry and remote sensing, 2013,82:83-92.
doi: 10.1016/j.isprsjprs.2013.04.007 |
[27] |
Gitelson A A, Gritz Y, Merzlyak M N.Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of plant physiology, 2003,160(3):271-282.
doi: 10.1078/0176-1617-00887 pmid: 12749084 |
[28] |
Gitelson A A, Keydan G P, Merzlyak M N.Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves[J]. Geophysical research letters, 2006,33(11):1-5.
doi: 10.1029/2006GL026457 |
[29] | 朱大运,熊康宁,肖华,等.基于植被指数的GF-1与Landsat-OLI石漠化识别能力对比评价[J].自然资源学报,2016,31(11):1949-1957. |
[ Zhu D Y, Xiong K N, Xiao H, et al.Comparison of rocky desertification detection ability of GF-1 and Landsat-OLI based on vegetation index[J]. Journal of Natural Resources, 2016,31(11):1949-1957. ] | |
[30] |
Vincini M, Calegari F, Casa R.Sensitivity of leaf chlorophyll empirical estimators obtained at Sentinel-2 spectral resolution for different canopy structures[J]. Precision Agriculture, 2016,17(3):313-331.
doi: 10.1007/s11119-015-9424-7 |
[31] |
Clevers J G P W, Gitelson A A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3[J]. International Journal of Applied Earth Observation and Geoinformation, 2013,23:344-351.
doi: 10.1016/j.jag.2012.10.008 |
[32] | Dawson T P, Curran P J.Technical note a new technique for interpolating the reflectance red edge position[J]. International Journal of Remote Sensing, 1998,19:2133-2139. |
[33] |
Cho M A, Skidmore A K.A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method[J]. Remote sensing of environment, 2006,101(2):181-193.
doi: 10.1016/j.rse.2005.12.011 |
[1] | 范兰馨, 吴艳红, 迟皓婧, 郑思齐, 闫家恒, 任永康, 孙忠华. 暖湿化下西北地区水体变化趋势遥感监测[J]. 地球信息科学学报, 2023, 25(9): 1842-1854. |
[2] | 邢子瑶, 董芯蕊, 昝糈莉, 杨帅, 黄梓焓, 刘哲, 张晓东. 融合VGI和遥感等多源数据的洪涝范围提取与模拟方法[J]. 地球信息科学学报, 2023, 25(9): 1869-1881. |
[3] | 张俊瑶, 杨晓梅, 王志华, 杨海坤, 张博淳, 万庆, 雷梅. 绿色发展理念视角下内蒙古煤矿区格局演变分析[J]. 地球信息科学学报, 2023, 25(8): 1655-1668. |
[4] | 曹煜, 方秀琴, 杨露露, 蒋心远, 廖美玉, 任立良. 基于随机森林的西辽河流域CCI土壤湿度降尺度研究[J]. 地球信息科学学报, 2023, 25(8): 1669-1681. |
[5] | 张寒博, 李彤, 李晓芳, 邓滢, 邓应彬, 荆文龙, 胡义强, 李勇, 杨骥. 无人机遥感和GWR结合的水华短时预测方法[J]. 地球信息科学学报, 2023, 25(8): 1682-1698. |
[6] | 林娜, 何静, 王斌, 唐菲菲, 周俊宇, 郭江. 结合植被光谱特征与Sep-UNet的城市植被信息智能提取方法[J]. 地球信息科学学报, 2023, 25(8): 1717-1729. |
[7] | 吴敏, 张明达, 李盼盼, 张勇健. 面向多源遥感影像数据的溯源模型研究[J]. 地球信息科学学报, 2023, 25(7): 1325-1335. |
[8] | 杨颖频, 吴志峰, 黄启厅, 骆剑承, 吴田军, 董文, 胡晓东, 肖文菊. 协同遥感与统计数据的粤西甘蔗种植分布提取及时空分析[J]. 地球信息科学学报, 2023, 25(5): 1012-1026. |
[9] | 刘潇, 刘智, 林雨准, 王淑香, 左溪冰. 面向遥感影像场景分类的类中心知识蒸馏方法[J]. 地球信息科学学报, 2023, 25(5): 1050-1063. |
[10] | 衡雪彪, 许捍卫, 唐璐, 汤恒, 许怡蕾. 基于改进全卷积神经网络模型的土地覆盖分类方法研究[J]. 地球信息科学学报, 2023, 25(3): 495-509. |
[11] | 于方圆, 曹家玮, 李发源, 李思进. 顾及对象特征的地面式光伏电站提取及减碳效益评估[J]. 地球信息科学学报, 2023, 25(3): 529-545. |
[12] | 高鹏飞, 曹雪峰, 李科, 游雄. 融合多元稀疏特征与阶层深度特征的遥感影像目标检测[J]. 地球信息科学学报, 2023, 25(3): 638-653. |
[13] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[14] | 陈凯, 雷少华, 代文, 王春, 刘爱利, 李敏. 基于开源数据和条件生成对抗网络的地形重建方法[J]. 地球信息科学学报, 2023, 25(2): 252-264. |
[15] | 饶子昱, 卢俊, 郭海涛, 余东行, 侯青峰. 利用视角转换的跨视角影像匹配方法[J]. 地球信息科学学报, 2023, 25(2): 368-379. |
|