地球信息科学学报 ›› 2010, Vol. 12 ›› Issue (6): 797-805.

• 地理信息系统应用分析 • 上一篇    下一篇

京津冀都市区经济增长空间分异的GIS分析

董冠鹏1,2, 郭腾云1, 马静3   

  1. 1. 中国科学院地理科学与资源研究所, 北京100101;
    2. 中国科学院研究生院, 北京 100049;
    3. 北京大学城市与经济地理系, 北京 100871
  • 收稿日期:2010-02-25 修回日期:2010-06-02 出版日期:2010-12-25 发布日期:2010-12-25
  • 作者简介:董冠鹏(1985-),男,河南许昌人,硕士研究生,主要从事产业、区域与城市发展研究。 E-mail:donggp08s@igsnrr.ac.cn
  • 基金资助:

    国家自然科学基金项目(40671054)资助

GIS Based Analysis on Spatial Disparity of Economic Growth in BTHMR

DONG Guanpeng1,2, GUO Tengyun1, MA Jing3   

  1. 1. Institute of Geographic Sciences and Natural Resources Research,CAS,Beijing 100101,China;
    2. Graduate University of Chinese Academy of Sciences,Beijing 100049,China;
    3. Department of Urban and Economic Geography,Peking University,Beijing 100871,China
  • Received:2010-02-25 Revised:2010-06-02 Online:2010-12-25 Published:2010-12-25

摘要: 基于GIS技术和探索性空间数据分析(ESDA)方法,利用京津冀都市区1995-2007年人均GDP数据,对京津冀都市区经济发展水平、经济增长率及其和初始发展水平动态关系进行了深入的研究。研究表明:(1)京津冀都市区经济差异和空间集聚都呈逐步扩大趋势,空间依赖增强,经济差异和空间集聚呈较高的正相关关系,京津冀都市区经济发展水平空间集聚的增加,在一定程度上加大了经济差异。(2)京津冀都市区内部形成了两大空间集聚区,一个以北京、天津、唐山为核心的高经济发展水平的集聚区;另一个是以承德、张家口和保定为核心的低经济发展水平的集聚区。(3)初始经济发展水平局部空间自相关类型不同的区域,经济增长率与初始发展水平的动态关系不同,初始发展水平高的空间集聚区表现出明显的经济收敛性,而初始发展水平低的空间集聚区中的多数地区则有落入"恶性循环累积陷阱"的倾向。

关键词: 空间依赖, 空间异质性, GIS与ESDA, 转移概率矩阵, 京津冀都市区

Abstract: The aim of the paper is to study the spatio-temporal dynamics of per capita GDP in the Beijing-Tianjin-Hebei Metropolitan Region(thereafter short for BTHMR).A sample of 140 county-level regions over the period 1995-2007 provides clear evidence of global and local spatial autocorrelation or autodependence as well as spatial heterogeneity.Transition probability matrices were used to verify the robustness of our conclusion.Based on techniques of exploratory spatial data analysis,several conclusions are draw as follows:(1) The economic disparity and spatial concentration of the BTHMR is enlarging,as indicated by coefficients of variation and global Moran's I.The economic disparity and spatial concentration have a positive relationship,indicating that with the increase of spatial concentration,economic disparity may also enlarge.(2) With the Moran scatter plot,the heterogeneity takes on two distinct spatial regimes.One corresponds to the HH scheme including Beijing,Tianjin and Tangshan mainly,the other to the LL scheme including mostly Chengde,Zhang Jiakou and Baoding municipalities,which are surrounding Beijing and Tianjin.(3) The annual average growth rates of per capita GDP also reveal high spatial autocorrelation.Regions with relatively high growth rates are localized close to other regions with relatively high growth rates more than if this localization is purely random,and the statistical significant HH cluster falls mainly into Beijing and Tianjin,indicating that at present,the polarization effect rather than the spread effect of growth pole is dominating.(4) The relationship between initial log per capita GDP and average growth rates is different according to various patterns of local spatial autocorrelation of the initial year.In the HH scheme,initial log per capita GDP and average growth rates have a negative relationship,as an evidence of standard β-convergence models,while for LL scheme,the local autocorrelation type of growth rates of most regions remain falling into the LL scheme,indicating that there are no β-convergence.

Key words: spatial dependence, spatial heterogeneity, GIS and ESDA, transition probability GIS and matrices, Beijing-Tianjin-Hebei Metropolitan Region