地球信息科学学报 ›› 2017, Vol. 19 ›› Issue (4): 475-485.doi: 10.3724/SP.J.1047.2017.00475
刘鹏华1(), 姚尧1,2,*(
), 梁昊3, 梁兆堂1, 张亚涛1, 王昊松1
收稿日期:
2016-07-01
修回日期:
2016-11-01
出版日期:
2017-04-20
发布日期:
2017-04-20
作者简介:
作者简介:刘鹏华(1995-),男,本科生,研究方向为遥感与地理信息系统。E-mail:
基金资助:
LIU Penghua1(), YAO Yao1,2,*(
), LIANG Hao3, LIANG Zhaotang1, ZHANG Yatao1, WANG Haosong1
Received:
2016-07-01
Revised:
2016-11-01
Online:
2017-04-20
Published:
2017-04-20
Contact:
YAO Yao
摘要:
近年来,细颗粒物污染尤其是PM2.5受到人们越来越多的关注,研究PM2.5的时空分布规律也具有越来越重大的意义。传统的遥感反演方法模型复杂,且不能揭示近地表面的PM2.5分布规律。地面监测站的建设为PM2.5的研究提供了更实时的观测数据,但由于测量噪声的影响,观测数据存在不准确的极端异常值。为了揭示中国PM2.5的时空分布特征,本研究采用Kalman滤波对2015年中国338个城市的空气质量监测网络大数据进行最佳估计,并分析其时空特征。同时,根据中国各城市的PM2.5浓度的时序分布,采用基于DTW的K-Medoids聚类方法将其分为4个等级,并采用q统计量来评估PM2.5浓度分布的空间分层异质性。结果表明,采用Kalman滤波能有效去除数据噪声,峰值信噪比(PSNR)明显增大。在时空分布上,中国PM2.5时间分布曲线呈现“U”形,冬季PM2.5浓度明显高于夏季,且日变化曲线呈现“W”形;秋冬季PM2.5浓度的空间分层异质性非常显著,且空间分布呈现“双核分布”,重污染区主要分布在华北平原、新疆等地,西藏、广东、云南等地是稳定的空气质量优良区。
刘鹏华, 姚尧, 梁昊, 梁兆堂, 张亚涛, 王昊松. 耦合卡尔曼滤波和多层次聚类的中国PM2.5时空分布分析[J]. 地球信息科学学报, 2017, 19(4): 475-485.DOI:10.3724/SP.J.1047.2017.00475
LIU Penghua,YAO Yao,LIANG Hao,LIANG Zhaotang,ZHANG Yatao,WANG Haosong. Analyzing Spatiotemporal Distribution of PM2.5 in China by Integrating Kalman Filter and Multi-level Clustering[J]. Journal of Geo-information Science, 2017, 19(4): 475-485.DOI:10.3724/SP.J.1047.2017.00475
[1] |
张智,白穆,游浩妍. 基于MODIS数据的PM2.5反演在大气污染监测中的应用[J].测绘科学,2016(9):1-10.
doi: 10.16251/j.cnki.1009-2307.2016.09.010 |
[Zhang Z, Bai M, You H Y.Application of high spatial resolution PM2.5 retrieval in air pollution monitor[J]. Science of Surveying and Mapping, 2016,9:1-10. ]
doi: 10.16251/j.cnki.1009-2307.2016.09.010 |
|
[2] |
Pope Iii C A, Burnett R T, Thun M J, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution[J]. Jama, 2002,287(9):1132-1141.
doi: 10.1001/jama.287.9.1132. pmid: 11879110 |
[3] |
Kappos A D, Bruckmann P, Eikmann T, et al.Health effects of particles in ambient air[J]. International Journal of Hygiene and Environmental Health. 2004,207(4):399-407.
doi: 10.1078/1438-4639-00306 pmid: 15471105 |
[4] |
Mohammed M O, Song W W, Li W, et al.Potential toxicological and cardiopulmonary effects of PM2.5 exposure and related mortality: Findings of recent studies published during 2003-2013[J]. Biomedical and Environmental Sciences, 2016,29(1):66-79.
doi: 10.3967/bes2016.007 pmid: 26822514 |
[5] |
Liu Y, Paciorek C J, Koutrakis P.Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information[J]. Environmental health perspectives, 2009,117(6):886.
doi: 10.1289/ehp.0800123 pmid: 19590678 |
[6] |
Lee H J, Liu Y, Coull B A, et al.A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations[J]. Atmos. Chem. Phys, 2011,11(15):7991-8002.
doi: 10.5194/acp-11-7991-2011 |
[7] |
Van Donkelaar A, Martin R V, Park R J.Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing[J]. Journal of Geophysical Research: Atmospheres, 2006,111(D21):5049-5066.
doi: 10.1029/2005JD006996 |
[8] | Ma Z, Hu X, Sayer A M, et al.Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004-2013[J]. Environ. Health Perspect, 2015,124:184-192. |
[9] | Paciorek C J, Liu Y. Limitations of Remotelysensed Aerosol as a Spatial Proxy for Fine Particulate Matter[R]. Harvard University Biostatistics Working Paper Series, Working Paper 89, 2008. |
[10] |
武装,覃爱明.基于大数据的空气质量数据可视化[J].中外企业家,2015(3):249:253.
doi: 10.3969/j.issn.1000-8772.2015.03.174 |
[Wu Z, Qin A M.Air quality data visualization based on big data[J]. Chinese & Foreign Entrepreneurs, 2015,3:249-253. ]
doi: 10.3969/j.issn.1000-8772.2015.03.174 |
|
[11] |
王振波,方创琳,许光,等. 2014年中国城市PM_(2.5)浓度的时空变化规律[J].地理学报,2015,70(11):1720-1734.
doi: 10.11821/dlxb201511003 |
[Wang Z B, Fang C L, Xu G, et al.Spatial-temporal characteristics of the PM2.5 in China in 2014[J]. Acta Geographica Sinica, 2015,70(11):1720-1734. ]
doi: 10.11821/dlxb201511003 |
|
[12] | 潘红玲. 中国重度雾霾时空分布特征及影响因子分析[D].成都:电子科技大学,2015. |
[Pan H L.Time and space distribution characteristics of the severe fog and haze of China and the influence factor analysis[D]. Chengdu: University of Electronic Science and Technology of China, 2015. ] | |
[13] | 李健军,杜丽,王晓彦,等. PM2.5自动监测仪器第一阶段测试报告和技术指标要求[R].中国环境监测总站,2012. |
[Li J J, Du L, Wang X Y, et al.PM2.5 automatic monitoring instrument in the first stage test report and technical index requirements[R]. China National Environmental Monitoring Station, 2012. ] | |
[14] |
宁爱民,文军浩,郑德智,等. PM2.5监测技术及其比对测试研究进展[J].计测技术,2013(4):11-14.
doi: 10.3969/j.issn.1674-5795.2013.04.002 |
[Ning A M, Wen J H, Zheng D Z, et al.Advances in monitoring technologies and its comparison research for PM2.5[J]. Metrology & Measurement Technology, 2013,4:11-14. ]
doi: 10.3969/j.issn.1674-5795.2013.04.002 |
|
[15] | Kalman R E.A new approach to linear filtering and prediction problems[J]. Journal of basic Engineering, 1960,82(1):35-45. |
[16] | Kalman R E, Bucy R S.New results in linear filtering and prediction theory[J]. Journal of basic engineering, 1961,83(1):95-108. |
[17] | 李慧茹. 基于kalman滤波的近实时电离层TEC监测与反演[D].西安:长安大学,2013. |
[Li H R.Near real-time monitoring and inverting TEC of ionosphere based on kalman filter[D]. Xi'an: Chang'an University, 2013. ] | |
[18] | 邱凤云. Kalman滤波理论及其在通信与信号处理中的应用[D].济南:山东大学,2008. |
[Qiu F Y.Kalman filtering with its application to communication and signal processing[D]. Jinan: Shandong University, 2008. ] | |
[19] | Kaufman L, Rousseeuw P.Clustering by means of medoids[M]. North-Holland, 1987. |
[20] | Kaufman L, Rousseeuw P J.Finding groups in data: An introduction to cluster analysis[M]. John Wiley \& Sons, 2009. |
[21] | Agrawal R, Faloutsos C, Swami A.Efficient similarity search in sequence databases[M]. Springer, 1993. |
[22] | Chan K, Fu A W. Efficient time series matching by wavelets[Z]. IEEE, 1999 126-133. |
[23] | Megalooikonomou V, Wang Q, Li G, et al.A multiresolution symbolic representation of time series[Z]. IEEE, 2005:668-679. |
[24] | Perng C, Wang H, Zhang S R, et al.Landmarks: A new model for similarity-based pattern querying in time series databases[Z]. IEEE, 2000:33-42. |
[25] |
Keogh E.A fast and robust method for pattern matching in time series databases[J]. Proceedings of WUSS, 1997,97(1):99.
doi: 10.1109/TAI.1997.632306 |
[26] |
Fu T.A review on time series data mining[J]. Engineering Applications of Artificial Intelligence. 2011,24(1):164-181.
doi: 10.1016/j.engappai.2010.09.007 |
[27] | Berndt D J, Clifford J. Using dynamic time warping to find patterns in Time Series[Z]. Seattle, WA, 1994, 359-370. |
[28] |
Liao T W.Clustering of time series data-a survey[J]. Pattern recognition, 2005,38(11):1857-1874.
doi: 10.1016/j.patcog.2005.01.025 |
[29] |
迟妍妍,张惠远. 大气污染物扩散模式的应用研究综述[J].环境污染与防治,2007(5):376-381.
doi: 10.3969/j.issn.1001-3865.2007.05.015 |
[Chi Y Y, Zhang H Y. A review of the development and application of air pollutant dispersion models[J]. Environmental Pollution & Control, 2007(5):376-381. ]
doi: 10.3969/j.issn.1001-3865.2007.05.015 |
|
[30] |
Zhang X, Liu J, Du Y, et al.A novel clustering method on time series data[J]. Expert Systems with Applications. 2011,38(9):11891-11900.
doi: 10.1016/j.eswa.2011.03.081 |
[31] |
刘贤梅,赵丹,郝爱民. 基于优化的DTW算法的人体运动数据检索[J].模式识别与人工智能,2012(2):352-360.
doi: 10.3969/j.issn.1003-6059.2012.02.025 |
[Liu X M, Zhao D, Hao A M. Human motion data retrieval based on dynamic time warping optimization algorithm[J]. Pattern Recognition and Artificial Intelligence, 2012(2):352-360. ]
doi: 10.3969/j.issn.1003-6059.2012.02.025 |
|
[32] | Frey B J, Dueck D.Clustering by passing messages between data points[J]. science. 2007,315(5814):972-976. |
[33] | Dueck D.Affinity propagation: Clustering data by passing messages[D]. Citeseer, 2009. |
[34] | 杨传慧,吉根林,章志刚. AP算法在图像聚类中的应用研究[J].计算机与数字工程,2012(10):119-121. |
[Yang C H, Ji G L, Zhang Z G.Research on application of algorithm AP in images clustering[J]. Computer and Digital Engineering, 2012,10:119-121. ] | |
[35] |
Rousseeuw P J.Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[J]. Journal of computational and applied mathematics. 1987,20:53-65.
doi: 10.1016/0377-0427(87)90125-7 |
[36] |
de Amorim R C, Hennig C. Recovering the number of clusters in data sets with noise features using feature rescaling factors[J]. Information Sciences, 2015,324:126-145.
doi: 10.1016/j.ins.2015.06.039 |
[37] | Llet I R, Ortiz M C, Sarabia L A, et al.Selecting variables for k-means cluster analysis by using a genetic algorithm that optimises the silhouettes[J]. Analytica Chimica Acta, 2004,515(1):87-100. |
[38] | 赵晨曦,王云琦,王玉杰,等. 北京地区冬春PM2.5和PM10污染水平时空分布及其与气象条件的关系[J].环境科学, 2014(2):418-427. |
[Zhao C X, Wang Y Q, Wang Y J, et al. Temporal and spatial distribution of PM2.5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing[J]. Environmental Science, 2014(2):418-427. ] | |
[39] | 李珊珊,程念亮,张玉洁,等. 2014年华北地区PM2.5数值模拟研究: 2015年中国环境科学学会学术年会[Z].中国广东深圳:2015:7. |
[Li S S, Chen N L, Zhang Y J, et al.Numerical simulation research of PM2.5 in north China in 2014[Z]. China Environmental Science Society Annual Conference Proceedings, 2015:7. ] | |
[40] |
关月,何立富. 2013年1月大气环流和天气分析[J].气象,2013,39(4):531-536.
doi: 10.7519/j.issn.1000-0526.2013.04.017 |
[Guan Y, He L F.Analysis of January 2013 atmosphere circulation and weather[J]. Meteorological Monthly, 2013,39(4):531-536. ]
doi: 10.7519/j.issn.1000-0526.2013.04.017 |
|
[41] |
Yang F, Tan J, Zhao Q, et al.Characteristics of PM2.5 speciation in representative megacities and across China[J]. Atmospheric Chemistry and Physics, 2011,11(11):5207-5219.
doi: 10.5194/acpd-11-1025-2011 |
[42] |
郑玫,张延君,闫才青,等. 中国PM2.5来源解析方法综述[J]. 北京大学学报(自然科学版),2014(6):1141-1154.
doi: 10.13209/j.0479-8023.2014.068 |
[Zheng M, Zhang Y J, Yan C Q, et al. Review of PM2.5 source apportionment methods in China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014(6):1141-1154. ]
doi: 10.13209/j.0479-8023.2014.068 |
|
[43] | 李珊珊,程念亮,徐峻,等. 2014年京津冀地区PM2.5浓度时空分布及来源模拟[J].中国环境科学,2015(10):2908-2916. |
[Li S S, Cheng N L, Xu J, et al. Spatial and temporal distrubions and source simulation of PM2.5 in Beijing-Tianjin-Hebei region in 2014[J]. Chinese Environmental Science, 2015(10):2908-2916. ] | |
[44] | 薛江丽,李俊,张鑫,等. 新疆春季两次沙尘暴过程中大气PM2.5元素组成特征分析[J]. 环境与健康杂志,2010(9):759-763. |
[Xue J L, Li J, Zhang X, et al. Characteristics of elemental compositions of ambient PM2.5 during sandstorm in spring in Xinjiang[J]. Environ Health, 2010(9):759-763. ] | |
[45] |
Wang J, Li X, Christakos G, et al.Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010,24(1):107-127.
doi: 10.1080/13658810802443457 |
[46] |
Wang J, Zhang T, Fu B.A measure of spatial stratified heterogeneity[J]. Ecological Indicators,2016,67:250-256.
doi: 10.1016/j.ecolind.2016.02.052 |
[47] | 张佟佟,李茜,张建辉,等. PM2.5污染特征研究综述:2014中国环境科学学会学术年会[Z].中国四川成都:2014:5. |
[Zhang T T, Li Q, Zhang J H, et al.A review on PM2.5 pollution characteristic research[Z]. China Environmental Science Society Annual Conference Proceedings, 2014:5. ] | |
[48] |
付桂琴,张迎新,谷永利,等.河北省霾日变化及成因[J].气象与环境学报,2014,30(1):51-56.
doi: 10.3969/j.issn.1673-503X.2014.01.008 |
[Fu G Q, Zhang Y X, Gu Y L, et al.Change of haze day and its forming reason in Hebei province[J].Journal of Meteorology and Environment, 2014,30(1):51-56. ]
doi: 10.3969/j.issn.1673-503X.2014.01.008 |
|
[49] | 郭涛,马永亮,贺克斌 区域大气环境中PM2.5/PM10空间分布研究[J]. 环境工程学报,2009(1):147-150. |
[Guo T, Ma Y L, He K B.Study on spatial distributions of PM2.5/PM10 in regional atmospheric environment[J]. Chinese Journal of Environmental Engineering, 2009,1:147-150. ] |
[1] | 王卷乐, 李姝晗, 王玉洁, 段博文, 周佳玲. 自然灾害综合风险普查中的质量检查方法研究[J]. 地球信息科学学报, 2023, 25(9): 1765-1773. |
[2] | 张俊瑶, 杨晓梅, 王志华, 杨海坤, 张博淳, 万庆, 雷梅. 绿色发展理念视角下内蒙古煤矿区格局演变分析[J]. 地球信息科学学报, 2023, 25(8): 1655-1668. |
[3] | 潘佳乐, 信睿. COVID-19疫情前后北美五大湖航运网络多尺度时空变化及影响因素研究[J]. 地球信息科学学报, 2023, 25(7): 1481-1499. |
[4] | 陆锋, 诸云强, 张雪英. 时空知识图谱研究进展与展望[J]. 地球信息科学学报, 2023, 25(6): 1091-1105. |
[5] | 张金雷, 陈奕洁, Panchamy Krishnakumari, 金广垠, 王骋程, 杨立兴. 基于注意力机制的城市轨道交通网络级多步短时客流时空综合预测模型[J]. 地球信息科学学报, 2023, 25(4): 698-713. |
[6] | 高顺祥, 陈珍, 张志健, 陈越, 肖中圣, 邓进, 许奇. 骑行替代步行后公共交通可达性改善效果评估方法[J]. 地球信息科学学报, 2023, 25(3): 439-449. |
[7] | 刘宇, 李勇. 面向城市可持续发展的城市商圈/街区知识图谱构建方法与应用展望[J]. 地球信息科学学报, 2023, 25(12): 2374-2386. |
[8] | 陈宇, 陈思, 李杰, 李怀展, 高延东, 王勇, 杜培军. 融合主成分时空分析与时序InSAR的高精度地表形变信息提取——以徐州地区为例[J]. 地球信息科学学报, 2023, 25(12): 2402-2417. |
[9] | 刘琪, 陈碧宇, 李歆艺. 基于轨迹数据和深度学习的CNG出租车CO2排放微观模型构建及碳减排效益评估方法[J]. 地球信息科学学报, 2023, 25(11): 2191-2203. |
[10] | 成星露, 孙永华, 张王宽, 王一涵, 曹许悦, 王衍昭. 气候干湿冷暖化复合类型的识别与量化方法[J]. 地球信息科学学报, 2023, 25(11): 2204-2217. |
[11] | 周榆欣, 邬群勇. CLAB模型:一种乘客出租出行需求短时预测的深度学习模型[J]. 地球信息科学学报, 2023, 25(1): 77-89. |
[12] | 赵文双, 江南, 陈云海, 曹一冰. 基于对象流的地缘环境时空分析模型[J]. 地球信息科学学报, 2022, 24(8): 1432-1444. |
[13] | 谢晓苇, 李代超, 卢嘉奇, 吴升, 许芳年. 基于移动监测数据的不同城市场景下PM2.5浓度精细模拟与时空特征解析[J]. 地球信息科学学报, 2022, 24(8): 1459-1474. |
[14] | 唐璐, 许捍卫, 丁彦文. 融合多源地理大数据的城市街区综合活力评价[J]. 地球信息科学学报, 2022, 24(8): 1575-1588. |
[15] | 杨友宝, 李琪, 韩国圣, 马丽君. 长沙市游憩-居住功能空间格局及其匹配关系研究[J]. 地球信息科学学报, 2022, 24(8): 1589-1603. |
|