纹理数据是三维建筑模型中的重要组成部分,通常会消耗大量的内存,导致模型较难实现流畅稳定的动态可视化。针对这个问题,本文提出了一种面向三维模型可视化的“分形-视距”(FVD)多分辨率纹理生成及纹理组织方法。该方法首先利用分形对纹理进行压缩并将其存入纹理数据库,然后按照视距及目标立面的可见性情况创建和组织对应纹理:当视距符合纹理调用条件且目标立面可见时,根据不同视距,执行多分辨率纹理创建,按照各类三维模型数据间的属性关系建立索引,存入关系数据库;当视距不符合纹理调用条件但该立面又可见时,利用纹理分割算法创建颜色纹理树,将节点合并表示立面纹理。最后根据变化的视角和距离调用相应纹理,实现三维模型的动态流畅可视化。本文选择山东省济南市历下区作为研究区域,使用的纹理数据共5290幅。实验结果表明,与3ds Max、SketchUp Pro相比,本文提出的方法减少内存占用分别约为36.5%和49.1%,帧速率提高约7%和10.9%,极大地提高了大场景三维模型可视化的渲染效率和速率。本文提出的方法在三维建筑模型渲染效率和视觉质量之间取得了很好的平衡,这一问题的改善将为建立智慧城市提供快速有效的科学支撑。
最佳管理措施(BMP)是治理流域土壤侵蚀、非点源污染等环境问题的有效途径,基于流域过程模拟的情景优化方法可得到综合效益近似最优的BMP空间配置方案集。目前用于配置BMP的空间单元(如子流域、水文响应单元、地块、坡位)均不能有效地综合体现BMP与地形部位间的空间关系以及同一地形部位内不同土地利用斑块上的BMP差异。本文提出将坡位单元与地块单元叠加生成的坡位-地块单元作为BMP空间配置单元,结合分布式流域建模框架SEIMS和多目标优化算法NSGA-II建立一套流域BMP空间优化配置方法。以江苏省溧阳市中田舍流域的非点源污染治理为例,选取减量施肥、退耕还林、封山育林和生态林草4种典型BMP,以最大化总氮削减率、最小化经济成本为优化目标,分别采用坡位单元、地块单元、坡位-地块单元进行情景优化。结果表明:相比坡位单元和地块单元,采用坡位-地块单元可获得最多具有近似最优综合效益的BMP情景,定量评价解集分布性和收敛性的Hypervolume指数分别提升了7%和4%,且BMP在空间上分布更加精细、配置更加灵活。本文方法可有效、合理地优化流域最佳管理措施的空间配置,为流域治理提供决策支持。
河网是地形结构的核心要素,能够有效地反映DEM对地表形态的刻画能力。实现不同分辨率条件下DEM河网相似性测度对DEM地形综合、DEM质量评估及DEM不确定性分析等研究具有重要意义。基于此,本文以黄土高原典型样区为研究区,基于5 m高精度DEM建立的多分辨率DEM数据集,构建了地形特征自适应的DEM河网自动提取方法,建立了综合拓扑关系、方位关系、距离关系及属性特征四维信息的河网相似性度量模型,并分析了河网相似性变化特征及其与地形参数的相关性。实验结果显示,河网自动提取方法的制图精度和用户精度均在90%以上,总体精度优于Passalacqua等提出的GeoNet方法,能够有效实现不同分辨率下河网较高精度提取;河网相似性度能综合反映河网空间分布特征的差异性,河网相似度与分辨率变化率之间的幂函数关系R2达0.978,且河网相似度与高程、坡度中误差分别表现为幂函数和对数函数关系,后者对数关系显著性优于前者幂函数关系。研究表明,在以河网作为DEM构建重要数据源的背景下,本文的研究成果可为DEM质量及其应用适宜性的定量评价提供基础。
现有恐怖团伙关系挖掘方法因其难以顾及恐怖组织特有的结构复杂、行动灵活、生存期长等特点而难以应用于反恐研究中。为此,本文从时空角度出发,通过引入时空邻近与团伙时空同现模式等概念,将多元独立分布的团伙关系发现问题建模为时空同现模式的频繁度评价问题,提出一种点模式分布下的团伙关系挖掘方法。基于此方法构建团伙关系网络,进而提出一种顾及时空邻近的社团关系度量方法。采用该方法对阿富汗与巴基斯坦地区1970—2018年真实GTD数据进行实验分析,结果表明:该研究区域主要恐怖团伙中共存在11种团伙关系({Taliban,TTP}等),在团伙关系网络中占据核心地位的恐怖组织为Taliban,其次为TTP、BLA。本文提出的方法能有效地挖掘出恐怖团伙之间潜在的关系,团伙关系的定量表达度量了不同组织在关系网络中的地位,验证分析表明,挖掘结果与相应团伙共同参与事件的时空分布、历史根源高度吻合。本文拓展了时空同现模式挖掘在恐怖团伙关系发现中的应用,研究成果对公安部门在识别某些恐怖事件制造者以及合理分配警力资源方面具有重要意义。
随着时代的发展,世界城市规模不断扩大,各大城市的交通需求陡然增加,而地面出行所带来的堵塞和环保问题导致政府部门把目光转向地下交通发展,其中地铁是地下交通发展中最重要的交通工具。准确划定地铁站点吸引范围,分析影响地铁站点吸引范围主要因素,不仅对于优化地铁交通服务和规划地铁周边建成环境具有重要意义,同时对于新建地铁站点设施规划具有参考价值。传统的地铁吸引范围划定方法大多依赖于居民日常出行活动的调查和经验意见,存在时间周期长且耗费巨大和吸引范围划定不准确的问题;而多源城市数据的涌现为量化地铁站点周边建成环境及客流空间分布、合理划定地铁站点提供了全新的解决方案。TOD(Transit Oriented Development,TOD)是高密度城市(如深圳、北京等)寻求的城市和交通和谐发展的重要选择,也是未来交通建设的主要参考理念。因此,从公共交通导向的开发视角出发,本文利用2017年的兴趣点、道路网络、公共交通线路等多源城市数据刻画地铁站点周围的TOD信息指标,利用K均值聚类进行地铁站点聚类,结合TOD指标的空间变化趋势,确定深圳市不同类型地铁站点的吸引范围。研究结果表明:① 基于TOD密度指标划定的地铁站点吸引范围能够揭示地铁站点的吸引范围的差异,且就业地点密度和土地混合利用度对地铁站点吸引范围的影响较大; ② 与城市非中心区域相比,城市中心区域的地铁站点吸引半径较小但出行需求较高,其凸显了地铁站点规划在空间服务密度和居民出行需求之间的取得均衡;③ 深圳市地铁站点吸引范围重叠与城市区域发展程度相关程度较高,可为利用现有地铁站点空间覆盖,发展城市功能集中区域提供参考。
随着我国社会经济的不断发展,居民对医疗的需求不断增加,分析评估城市医疗设施服务范围,对解决医疗供需矛盾,提升城市健康水平具有重要意义。目前国内医疗设施服务覆盖评估,多忽视交通网络与人群分布因素,致使城市医疗服务存在不少覆盖盲区。山地城市复杂地形环境影响居民出行能力与出行方式,增大医疗设施服务覆盖的难度,传统方法难以对其准确评估。本文在分析比对现有医疗可达性研究方法优劣势的基础上,以重庆市主城区为实验区,试图针对性地采用优化两步移动搜寻法,并根据网络地图数据、官方统计数据,基于GIS平台建立医疗设施可达性分析模型,从市域、片区与社区3个层级科学评估医疗设施服务覆盖范围与各街镇医疗可达性。结果表明,改进后的方法更能处理海量医疗数据,准确模拟医疗服务范围,并输出全层级医疗设施服务覆盖评估结果,更适用于交通复杂的山地地区与多层级医疗设施服务覆盖评估。综合评估显示,重庆市主城区医疗设施服务存在大型综合医院空间分布不均、基层医疗设施内部覆盖不全的问题,并且医疗覆盖度较好的街镇仅占总数的33.1%。据此,建议老城区集聚的优质大型医疗资源向新城地区共享的同时,按照地理区位与技术能力划分、组建层级完备的医疗片区,补齐老城区基层医疗服务的短板,以期完善重庆主城区医疗设施配置。
公交系统作为一种面向公众全体尤其是弱势群体的公共服务设施,其公平性对于促进宜居城市与公交都市建设具有较大的现实意义。本研究考虑山地城市地形变化的影响,提出了一类测度公交站点实际服务范围的新方法来修正公交服务供给公平性评价模型,并以贵阳市为例,对贵阳市公交系统服务供给在老年群体中分配的公平性进行分析。研究结果表明: ① 山地城市地形影响下的公交站点实际服务范围将降低,公交供给服务水平明显下降;② “常规+BRT(Bus Rapid Transit快速公交)”公交系统服务供给在老年人群体中分配公平性程度处于差距悬殊等级,且分配呈现出两极分化趋势;“常规+BRT”公交系统服务供给在老年人群体中空间配置失衡较为显著,城市核心区老年群体较为集聚,然而享有的人均“常规+BRT”公交系统服务供给低于整体水平;③ 若增加轨道1号线,“常规+BRT”公交系统服务供给在老年人群体中分配呈现出的两极分化趋势在一定程度上得到了缓解;“常规+BRT”公交系统服务供给在老年人群体中的空间配置失衡得到一定改善。研究结果能为山地城市交通规划部门合理布局公交系统服务供给设施提供理论参考。结合山地城市地形变化特点,本研究针对公交系统服务供给存在的公平性问题,提出了相应的优化建议。
21世纪以来的国际关系错综复杂、瞬息万变,给世界的经济、政治、安全、外交等带来了深刻影响。及时掌握国际关系的变化对中国外交政策制定、整体发展规划有着极为重要的意义。随着大数据时代的来临,应用大数据方法结合国际关系定量分析的工具对国际关系变化模式进行及时、有效地挖掘成为了一个重要的议题。强时效性、高信息量的新闻事件大数据蕴含能及时地反映出国际事件影响全球国际关系的信息。网络化挖掘作为一种面向大数据的信息挖掘方法,因其具象化的关系表达方式和丰富的结构分析方法组成为数据驱动的国际关系研究的重要方法。以短期国际事件为背景,对新闻事件大数据进行网络化挖掘,进行国际关系网络的时序演化分析,能够在短期国际事件造成国际关系变化的场景下,提供应对国际关系变化的解决方案参考。本文以中美贸易战为例研究特殊事件中国际关系网络的时序演化模式:基于GDELT新闻事件数据进行国际关系网络的构建,利用复杂网络方法进行信息挖掘并进行国际关系分析。首先利用该数据构建国际关系网络,然后用动态社区划分方法对其进行时序演化模式探测,最后结合点分布模式、核密度分析、空间自相关等空间分析方法对其进行空间特性分析。研究发现:① 在特殊事件发生过程中,网络社区的演化方式与发生的子事件类型具有很强的相关性;② 同一社区的节点在空间分布上一般呈现明显的聚集特征,特定区域节点加入不同社区频率高,节点网络属性值的空间高值分布随事件发生而改变;③ 网络局部特征值随子事件发生往往会发生较大变化。本文的研究为短期国际事件中的国际关系动态变化实证分析提供了一个新的视角,为国际关系研究的空间转向提供了一个新的思路,在方法层面对数据驱动的国际关系研究进行了补充,同时也为大数据的网络化挖掘提供了参考。
数字高程模型(Digital Elevation Model, DEM)是地球表层系统科学相关研究的基础数据,DEM数据精度的定量评价对科学选择DEM数据源、量化数据误差的影响等具有重要意义。在目前全球尺度可免费获取的DEM数据中,2018年发布的TanDEM-X 90 m DEM(TanDEM-X 90)数据凭借其较好的现势性得到了广泛关注。然而,目前大区域尺度上开展的针对TanDEM-X 90数据精度的评价工作较为有限,缺乏对其整体精度及误差空间分布特征的系统认知。本文以ICESat/GLAS卫星测高数据为评价数据,并选择SRTM-3 DEM和AW3D30 DEM作为对比数据,以平均绝对误差(MAE)、均方根误差(RMSE)、偏度和峰度等为统计指标,重点研究了TanDEM-X 90在中国主要陆地区域的误差统计特征和空间分布规律,探讨了高程、坡度、地貌类型、土地覆盖等对DEM精度的影响,并进行了适用性分析。结果表明:① 在中国区域,TanDEM-X 90数据的平均绝对误差和均方根误差分别为4.31 m和7.87 m,其高程精度与SRTM-3相近,但明显低于AW3D30;② 当坡度低于4°时,TanDEM-X 90的整体精度为3种数据中最高的;③ 对于平原、丘陵、台地这3类地貌类型,TanDEM-X 90相较SRTM-3而言具有一定精度优势;④ 本研究还以流域为单元绘制了全国尺度的TanDEM-X 90误差空间分布图,为该数据在全国尺度或典型区域的应用提供重要参考。研究也表明TanDEM-X 90在反映地表高程信息方面具有更好的时效性,能更好地反映中国区域近年来受人类活动影响的地表高程变化。
叶面积指数Leaf Area Index (LAI)作为植被生物量指标之一,耕作区LAI不仅能反映作物的长势动态,且与农业生态、作物产量密切相关。本文通过对2001—2017年中国农田区域的MODIS-LAI长时序数据进行重建,利用Mann-Kendall检验、变异系数、重心迁移模型等方法分析了中国耕作区LAI的时空变化特征。结果表明:① 中国耕作区LAI在2001—2017年显波动式上升,且与农作物单产相关系数高达0.91;② 不同耕作区季节差异显著,夏季>秋季>春季>冬季,夏季平均为1.54,生长季平均为1.13,秋季平均为0.78,春季平均为0.63,冬季平均为0.31;③ 2001—2012年二熟、三熟区LAI变化平缓,2012年后有上升趋势但未发生明显突变;一熟区2006年之前处于平稳上升状态,2006年之后发生突变上升趋势显著;④ 研究时段内我国长江以北的耕作区LAI变异程度较为突出,最高达4.12; 农田面积重心经历了先向西南迁移,后再向西北迁移过程,农田生长季LAI重心相对于农田面积重心变幅较大,经历了南北波动式向西部迁移过程,迁移距离分别为82.78 km、90.53 km。
在高分辨率机载干涉SAR成像处理过程中,由于载机飞行过程中偏离理想轨迹,需要高精度的惯导系统和GPS系统记录载机的运动轨迹并进行运动补偿。然而,由于目前传感器导航精度的限制,在完成运动补偿处理后仍然存在轨道误差,从而影响干涉相位的精度,本文提出了一种机载双极化InSAR轨道误差去除方法。该方法利用小波多尺度分析对不同极化方式差分干涉相位进行多尺度分解,减弱地形误差相位、噪声相位对轨道误差的干扰,然后根据不同极化方式轨道误差的高度相关性,对相位进行降权改正,得到轨道误差改正后的差分干涉相位。为验证该方法的可靠性,分别采用模拟数据和E-SAR P波段双极化数据进行实验分析,结果表明原始差分干涉图中的轨道误差剔除明显,利用P波段获得的校正干涉图生成数字高程模型(DEM),轨道误差改正前后获取的DEM与LiDAR值的均方根误差(RMSE)分别为6.02 m和1.68 m,提高了InSAR测高精度。本研究为机载InSAR轨道误差补偿提供了一种新的思路。
沙漠化是干旱、半干旱地区的重要生态环境问题,我国西北地区沙漠化土地分布广泛,加剧的沙漠化问题影响着区域经济和社会的发展,遥感技术的进步为沙漠化评估与制图提供了重要手段。本文以内蒙古自治区浑善达克沙地为研究区,基于面向对象方法,对研究区Landsat8 OLI影像进行沙地最优尺度分割。以分割对象为基础,实验在冬夏季影像上分层分阶段提取沙地。在冬季影像上,本文提出新比值型指数RSBI(Ratio Soil Brightness Index)对沙地进行提取,精度较SBI指数提高4.11%。后基于改进型植被覆盖度指数(FMSAVI)与反照率(Albedo)构建二维特征空间,建立沙地分类指数模型(DCI),对夏季影像沙区分类。该方法总体精度为83.24%,较NDVI-Albedo二维特征空间模型精度提高5.59%,较FMSAVI模型提高16.20%。本文结合RSBI指数与FMSAVI-Albedo特征空间反演的DCI指数模型来提取沙地信息并对沙地分类,减少了沙地提取误差,提高了分类精度,为沙地信息的研究提供了新思路。
近年来,城市发展快速,大量人口奔向城市工作生活,城市建筑物的数量有如雨后春笋般扩张,需要合理地规划城市土地资源,遏制违规乱建现象,因此基于高分辨率遥感影像,对建筑物进行准确提取,对城市规划和管理有着重要辅助作用。本文基于U-Net网络模型,使用美国马萨诸塞州建筑物数据集,对网络模型结构进行探究,提出了一种激活函数为ELU、“编码器-特征增强-解码器”结构的网络模型FE-Net。实验首先通过比较不同网络层数的U-Net5、U-Net6、U-Net7的建筑物提取效果,找到最佳的基础网络模型U-Net6;其次,基于该模型,加入特征增强结构得到“U-Net6+ReLU+特征增强”的网络模型;最后,考虑到ReLU容易产生神经元死亡,为优化激活函数,将激活函数替换为ELU,从而得到网络模型FE-Net(U-Net6+ELU+特征增强)。比较3个网络模型(U-Net6+ReLU、U-Net6+ReLU+特征增强、FE-Net(U-Net6+ELU+特征增强))的建筑物提取结果,表明FE-Net网络模型的建筑物提取效果最好,精度放松F1值达到97.23%,比“U-Net6+ReLU”和“U-Net6+ReLU+特征增强”2个网络模型分别高出0.36%和0.12%,且与其他具有相同数据集的研究成果比较,具有最高的提取精度,它能较好地提取出多尺度的建筑物,不仅对小尺度建筑物有较好的提取效果,而且能大致、较完整地提取出形状不规则的建筑物,有相对更少的漏检和错检,较准确地实现了端到端的建筑物提取。
快速、准确地从卫星影像中提取水体信息一直是遥感应用的热点问题,在水资源管理、水环境监测和灾害应急管理等领域极具应用价值。虽然目前已有多种针对Landsat系列影像的水体提取方法,但由于地理位置、地形和水体形态等环境背景因素的影响,导致同种方法在不同的环境背景中呈现出不同的提取效果。本文针对人为影响严重、影像明暗对比强烈的城区(北京怀柔县城周边)以及地形起伏明显、水体细小的非城区(北京密云水库周边) 2种典型背景环境,选择波段设置略有差异的Landsat 5(2009年)和Landsat 8(2019年)卫星影像,对比了常用的指数法(NDWI和MNDWI)和分类法(最大似然法和支持向量机)在水体信息提取方面的优势和不足。结果表明:在城区背景中,SVM的准确性最高(总体精度>97%);在非城区背景中,MNDWI与SVM的精度相当(总体精度>95%),前者更适用于水体的快速提取,而后者提取的山间细碎河流更完整,且在Landsat 8中应用的效果更好。该研究为不同环境背景下水体提取方法的选择提供了参考。
快速、准确的湿地地物分类是实现湿地精准监测的基础。为进一步研究湿地地物显著极化特征对分类结果的影响,提出了基于最优极化特征组合的SAR影像湿地分类方法。该方法利用箱型图等方式,在特征选择因子等准则下从多种极化分解方法选择最优极化特征进行组合,并在此基础上实现分类。首先,为了简化极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)影像并降低其斑点噪声,对互易处理后的极化SAR影像进行多视化和精致Lee滤波。然后,进行6种极化分解,得到多种极化特征。再之,利用箱型图、Cloude-Pottier平面散点图和均值散点图详尽分析上述极化特征和双台河口湿地典型地物散射机制间的相关性,并据此在特征选择因子、特征判断因子、H/α平面等和均值标准差的准则下选择最优极化特征组合。最后,以上述最优极化特征组合为输入,设计支持向量机(Support Vector Machine, SVM)分类器,实现湿地的最优分类。本文以辽宁省盘锦市辽河入海口双台河口湿地为例,采用2016年7月的C波段Radarsat-2全极化数据验证最优极化特征组合的有效性。结果表明:① Cloude-Pottier分解的H、A和α、MCSM (Multiple-Component Scattering Model )分解的表面散射、Pauli分解的T33与Yamaguchi3分解的表面散射和二面角散射为最优极化特征;② 使用最优极化特征组合不仅可以减少极化特征冗余,还可以提高各湿地地物的生产者精度、分类总精度及Kappa系数,其中各湿地地物的生产者精度提高1%~5%,分类的总精度可达到94.25%,Kappa系数达到93.63%。
叶绿素a(chl-a)是重要的海洋环境水色参数,但是受云雾覆盖的影响,卫星遥感chl-a产品中普遍存在数据缺失的现象,大大降低了数据的应用效果。经验正交函数插值方法(DINEOF)是目前在长时间序列缺失数据重构方面应用最广泛的数据插值重构方法,本研究针对DINEOF方法在空间小尺度上过度平滑的缺陷,设计了一种面向渤海chl-a的分层重构方法(SDS-DINEOF),该方法重点考虑了渤海chl-a分布呈现近岸高、中部低的规律,将渤海海域等距离分为32个区域,对位于每个区域的子数据集分别进行重构;利用该方法对2019年全年每日10时13分的渤海GOCI卫星chl-a产品进行了重构,并将其重构结果与DINEOF重构结果进行了对比分析。分析结果表明:应用SDS-DINEOF方法相比DINEOF方法,chl-a重构精度和时间效率上均得到了提升,其中整体精度提高了3.52%,重构时间节约了125%,尤其是在距离陆地最远的渤海中部区域,应用该方法重构精度提升最为显著。本文取得的研究结果对于海洋遥感数据产品的质量提高和应用效率的提升,具有较为重要的理论意义和实际应用价值。
土壤湿度是地表水热交换过程和水文循环中的一个关键组成部分,获取高时空分辨率的土壤湿度数据一直是当前研究的热点。SMAP(Soil Moisture Passive and Active)主被动微波土壤湿度产品的精度高,但存在着空间分辨率低和时间分辨率缺失的问题,这限制了其在区域尺度上的应用,为解决这一问题得到更高时空分辨率的土壤湿度产品,本文利用广义回归神经网络模型(GRNN)模拟了MODIS地表温度、反射率、植被指数光学/热红外遥感数据以及高程、坡度、坡向、经纬度数据与SMAP土壤湿度的关系,从而将京津冀地区SMAP L2土壤湿度产品的时间分辨率由不连续(4~20 d)提升至1 d,空间分辨率由3 km提升至1 km,并扩展其在京津冀地区的空间覆盖范围。研究发现:① GRNN模型总体验证结果表明土壤湿度估算值与SMAP原始值的相关性较高(r=0.7392),均方根误差(RMSE)为0.0757 cm3/cm3;② 不同季节典型日期的GRNN模型估算结果精度相差较大,春季处的相关性相比其他季节最低,精度相对较高(r春=0.6152,RMSE春=0.0653cm3/cm3),秋季和夏季土壤湿度估算精度较为接近(r夏=0.6957,r秋=0.7053,RMSE夏=0.0754cm3/cm3,RMSE秋=0.0694cm3/cm3),冬季的估算精度最高(r冬=0.8214,RMSE冬=0.0367cm3/cm3);③ 2016年京津冀夏秋季节的土壤湿度较其他季节要显著提高,空间分布上坝上高原区域较低,而沿海地区的土壤湿度明显较高。本研究对京津冀地区的生态水文、气候预测以及干旱监测等应用领域具有重要价值。