地球信息科学理论与方法

基于拓扑谓词的空间拓扑关系相似性度量模型与应用

展开
  • 1. 地理信息工程国家重点实验室, 西安710054;
    2. 西安测绘研究所, 西安710054
安晓亚(1982-),男,博士,助理研究员,主要从事地理空间数据相似性及应用方面的研究。E-mail:xya2001@tom.com

收稿日期: 2012-10-31

  修回日期: 2012-12-25

  网络出版日期: 2013-04-18

基金资助

国家自然科学基金资助项目(41201469,41071297)。

Similarity Measuring of Spatial Topological Relations Based on Topological Predication

Expand
  • 1. State Key Laboratory of Geographical Information Engineering, Xi’an 710054, China;
    2. Xi’an Research Institute of Surveying and Mapping, Xi’an 710054, China

Received date: 2012-10-31

  Revised date: 2012-12-25

  Online published: 2013-04-18

摘要

空间拓扑关系相似性度量是空间数据相似性度量的重要组成部分, 它是空间数据检索和空间场景相似查询的基础和关键。本文旨在建立一种能够同时度量简单和复杂拓扑关系间的相似性度量模型。首先, 以9 个拓扑谓词提出一种简单拓扑关系间相似性度量方法, 即定义简单拓扑关系之间距离为两个9 交集矩阵之间的距离, 从而得到简单拓扑关系之间的相似度。然后, 综合考虑实体集合间的数量相似度和维数相似度,建立实体集合间的简单拓扑关系相似性度量模型, 并在上述实体集合间简单拓扑关系相似性度量的基础上, 采用分解-组合的策略先将复杂拓扑关系分解为若干个局部拓扑关系, 通过组合局部拓扑关系之间的相似度, 直至建立复杂拓扑关系间的相似性度量模型。实验表明, 制图综合中的选取对空间实体集合之间拓扑关系相似度的影响最大, 其他因素影响较小,因此, 其能以拓扑关系相似度来度量制图综合对拓扑关系的改变程度。

本文引用格式

安晓亚, 杨云, 刘平芝 . 基于拓扑谓词的空间拓扑关系相似性度量模型与应用[J]. 地球信息科学学报, 2013 , 15(2) : 159 -165 . DOI: 10.3724/SP.J.1047.2013.00159

Abstract

Similarity measuring of spatial topological relations is the important part of similarity measuring of spatial data, and also is the basic and key technology of spatial data retrieval and spatial scene query. Its meaning is to measure the similarity of topological relationships between multiple data entities in different sources, different sources scales of the same region. Common topological relations have been abstracted into nine topological predications. Current researches mainly focus on the topological relations similarity measuring between two simple entities, but mostly do not involve topological relations similarity measuring for the entire data sets, as well as the complex line targets. In this paper we present a method of measuring simple topological relations based on 9- intersection matrix, that is, the distance between two 9- intersection matrixes as the simple topological relations distance to measure the differences between two simple topological relations, so that we can get a simple topological relations similarity. Then considering the quantity similarity and dimension similarity between entity sets, we can get the simple topological relations similarity measuring model between entity sets. In this paper we establish a similarity measuring model of complex topological predication by using the strategy of decomposing- combination based on the simple topological relations similarity measuring model. Firstly, the complex topology relationship is broken down into a number of local topological relationships. Then through a combination of local topological relations similarity, we get the complex topology relationship similarity measuring model. At last, the method is used to measure similarity of different scales and different sources data. Experimental results show that the selection of cartographic generalization impact the topological relations similarity between entity sets mostly, and other factors with smaller impacts to the experimental data in this article. Experimental results also demonstrate that the topological relations similarity can be used to measure the changing degree of topological relations caused by the cartographic generalization.

参考文献

[1] 安晓亚.空间数据几何相似性度量理论方法与应用研究[D].郑州:解放军信息工程大学,2011.

[2] 安晓亚,孙群,张小朋,等.多源地理空间数据同化的主动更新与应用分析[J].地球信息科学学报,2010,12(4):541-548.

[3] Patricia L F. A probabilistic approach to spatial ranking forgeographic information retrieval [D]. University of CaliforniaBerkeley, USA, 2004.

[4] Max J, David M M, John H. The 9-intersection: Formalismand its use for natural-language spatial predicates[R].www.ncgia.ucsb.edu/Publications/Techse Reports /94/ 94- 1.PDF, 1994.

[5] Papadias D, Karacapii I N, Arkoumanid. Processing fuzzyspatial queries:A configuration similarity approach[J]. InternationalJournal of Geographic Information Science,1999,13(2):93-118.

[6] Konstantinos A N, Max J. Spatial-Scene similarity queries[J].Transactions in GIS, 2008,12(6):661-681.

[7] Huang P W, Hsu L, Su Y-W, et al. Spatial inference andsimilarity retrieval of an intelligent image database systembased on object’s spanning representation[J]. Journal ofVisual Languages & Computing, 2008(19):637-651.

[8] 丁虹.空间相似性理论与计算模型的研究[D].武汉:武汉大学, 2004.

[9] 李彬,梁爽,孙正兴.基于空间关系的手绘草图检索[J].计算机科学,2004,32(12):227-231.

[10] 孟妮娜,艾廷华,周校东.制图综合中空间关系相似度的集成表达[J].华中师范大学学报(自然科学版),2009,43(4):693-697.

[11] 吕秀琴,吴凡.多尺度空问对象拓扑相似关系的表达与计算[J].测绘信息与工程,2006,31(2):29-31.

[12] 陈军,刘万增,李志林,等.线目标间拓扑关系的细化计算方法[J].测绘学报,2006,35(3):255-260.

[13] 杜世宏,王桥,秦其明.空间关系模糊描述与组合推理[M].北京:科学出版社,2007.

文章导航

/