遥感技术与应用

基于街道空间数据及GPS测量的SRTM-DEM 校正和插值细化

展开
  • 1. 中国科学院测量与地球物理研究所,武汉 430077;
    2. LAGE, Instituto de Geografia,UNAM,Mexico City 04510, Mexico
肖飞(1978-),男,陕西人,博士,研究方向:地形地貌数字分析及GIS资源环境应用。E-mail:xiaof@whigg.ac.cn

收稿日期: 2010-08-25

  修回日期: 2011-01-19

  网络出版日期: 2011-02-25

基金资助

国家自然科学基金项目(40801045);湖北省自然科学基金项目(2009CDB138);中国科学院知识创新项目(0609211120);国家自然科学基金项目(40801186)共同资助。

Correcting and Downscaling SRTM DEM Using Auxiliary Street Map and GPS Data

Expand
  • 1. Institute of Geodesy &|Geophysics, Chinese Academy of Sciences, Wuhan 430077, China;
    2. LAGE, Instituto de Geografia, UNAM, Mexico City 04510, Mexico

Received date: 2010-08-25

  Revised date: 2011-01-19

  Online published: 2011-02-25

摘要

针对城市地区SRTM 数字高程模型,本文引入街道空间分布信息作为辅助数据,并结合GPS实地测量,对DEM中具有空间相关性的误差部分进行修正,从而尝试在一定程度上提高SRTM数据的垂直精度和空间分辨率。本文以墨西哥城Xico地区为例,解析SRTM DEM像元分辨率单元内地物表面平均高程值的组成结构;分析形成DEM高程值的地物组分之间的空间关系并根据GPS实地测量数据进行检验;探讨SRTM DEM中具有空间相关性系统偏差的产生原因;计算街道空间分布和SRTM 数据中与其具有空间相关性的系统误差之间的定量关系;并评估SRTM数据在该区的总体高程偏差。根据辅助数据与DEM系统误差之间的空间关系,通过GIS空间运算实现SRTM DEM的校正和细化。结果表明,与原始SRTM数据相比,校正细化后的DEM其整体高程偏差,以及与街道建筑结构相关的系统误差,均能够得到一定程度的校正和改进,并能较好地反映城区实际地面高程和城区建筑结构信息。在其他地形数据缺乏情况下,尽管计算结果受SRTM自身数据精度所限,但利用含有空间定位信息的辅助数据,对现有较低空间分辨率的DEM进行误差校正及细化,仍可在一定程度上消减与辅助数据相关的空间误差,提高DEM数据精度,从而为相关研究提供更精确的基础地形资料。

关键词: SRTM; DEM; 空间分辨率; 误差; 细化

本文引用格式

肖飞, Parrot J. F., 杜耘, 凌峰 . 基于街道空间数据及GPS测量的SRTM-DEM 校正和插值细化[J]. 地球信息科学学报, 2011 , 13(1) : 118 -125 . DOI: 10.3724/SP.J.1047.2011.00118

Abstract

We developed and tested a geo-statistical methodology to correct the spatially correlated errors of SRTM DEM and downscale the spatial resolution of the DEM using auxiliary street map and GPS data in city areas. The methodology was based on geo-statistics and spatial analysis techniques in GIS. The calculation procedures were illustrated using a case study in the Xico area of Mexico City. Spatial structures of all the surface features contributing the elevation value within a single SRTM resolution cell were separated into basic components. Then the syntagmatic relationships among the basic components were evaluated and verified using GPS survey data in the study area. Afterwards, spatial relations between the structure of the basic components and the errors surface of the DEM were analyzed using GIS spatial analytical methods. From spatial analysis, the error surface of SRTM DEM proved to be spatially correlated with spatial patterns of streets in the study area. A global error of the DEM was also identified through the above process. Accordingly, the spatially correlated random errors and the global error can be located and corrected by using the auxiliary street map and GPS data. Since the auxiliary street map has finer resolution than the SRTM DEM and is spatially correlated with the error surface of the DEM, the coarse-resolution DEM in the city area can be downscaled to a finer resolution DEM according to the spatial relations between DEM and the auxiliary street map using geo-statistical methodology. The result shows that the downscaled DEM has better performance on the representation of real topography and urban structure. Even though the result was determined by the accuracy of the original DEM, the methodology presented here is effective at downscaling of spatial resolution and the correction of the spatially correlated errors for SRTM in city areas, and could be helpful in topographical information collection provided that there are deficient of other higher resolution DEMs.

参考文献


[1] 周成虎,程维明,钱金凯,等. 中国陆地1∶100万数字地貌分类体系研究
[J]. 地球信息科学学报, 2009, 11(6): 707-724.


[2] 程维明,周成虎,柴慧霞,等. 中国陆地地貌基本形态类型定量提取与分析
[J]. 地球信息科学学报, 2009, 11(6): 725-736.


[3] 肖飞,张百平,凌峰,等. 基于DEM的地貌实体单元自动提取方法
[J]. 地理研究, 2008, 27(2): 459-466.


[4] 杨昕,汤国安,刘学军,等.数字地形分析的理论、方法与应用
[J] .地理学报, 2009, 64(9): 1058-1070.


[5] Hutchinson M F. A New Procedure for Gridding Elevation and Stream Line Data with Automatic Removal of Spurious Pits
[J]. Journal of Hydrology, 1989, 106: 211-232.


[6] Hutchinson M F. A Locally Adaptive Approach to the Interpolation of Digital Elevation Models. // NCGIA. Proceedings of the Third International Conference Workshop on Integrating GIS and Environmental Modeling . Santa Barbara, CA: National Center for Geographic Information and Analysis, 1996.


[7] Ling Feng, Zhang Qiuwen, Wan Cheng. Filling Voids of SRTM with Landsat Sensor Images in Rugged Terrain
[J]. International Journal of Remote Sensing, 2007, 28(2): 465-471.


[8] Holmes K W, Chadwick O A, Kyriakidis P C. Error in a USGS 30m Digital Elevation Model and Its Impact on Digital Terrain Modeling
[J]. Journal of Hydrology, 2000, 233: 154-173.


[9] Hunter G J, Goodchild M F. Modeling the Uncertainty of Slope and Aspect Derived from Spatial Databases
[J]. Geographical Analysis, 1997, 29(1): 35-49.


[10] Oksanen J, Sarjakoski T. Error Propagation of DEM-based Surface Derivatives
[J]. Computers & Geosciences, 2005, 31(8): 1015-1027.


[11] Hengl H, Bajat B, Blagojevic ' D, et al. Geostatistical Modeling of Topography Using Auxiliary Maps
[J]. Computers & Geosciences, 2008, 34: 1886-1899.


[12] Carlisle B H. Modelling the Spatial Distribution of DEM Error
[J]. Transactions in GIS, 2005, 9: 521-540.


[13] Oksanen J. Uncovering the Statistical and Spatial Characteristics of Fine Toposcale DEM Error
[J]. International Journal of Geographical Information Science, 2006, 20(4): 345-356.


[14] Kellndorfer J, Walker W, Pierce L. Vegetation Height Estimation from Shuttle Radar Topography Mission and National Elevation Datasets
[J]. Remote Sensing of Environment, 2004, 93: 339-358.


[15] Simard M, Rivera-Monroy V H, Mancera-Pineda J E, et al. A Systematic Method for 3D Mapping of Mangrove Forests Based on Shuttle Radar Topography Mission Elevation Data, ICEsat/GLAS Waveforms and Field Data: Application to Ciénaga Grande de Santa Marta, Colombia
[J]. Remote Sensing of Environment, 2008, 112(5): 2131-2144.


[16] Temme A M, Heuvelink G B M, Schoorl J M, et al. Geostatistical Simulation and Error Propagation in Geomorphometry. // Hengl T, Reuter H I. Geomorphometry: Concepts, Software, Applications . Amsterdam: Elsevier, 2008.121-140.


[17] Kyriakidis P C, Shortridge A M, Goodchild M F. Geostatistics for Conflation and Accuracy Assessment of Digital Elevation Models
[J]. International Journal of Geographical Information Science, 1999, 13(7):677-708.


[18] Christensen R. Linear Models for Multivariate, Time Series, and Spatial Data
[M]. New York: Springer, 2001,393-394.


[19] Rabus B, Eineder M, Roth A, et al. The Shuttle Radar Topography Mission: A New Class of Digital Elevation Models Acquired by Spaceborne Radar
[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2003, 57: 241-262.


[20] 李爽,姚静.数字地形模型数据产品特点与评估分析
[J]. 地理科学进展, 2005, 24(6): 99-108.


[21] 陈俊勇. 对SRTM3和GTOPO30地形数据质量的评估
[J]. 武汉大学学报·信息科学版, 2005, 30(11): 941-944.


[22] Rosen P, Eineder M, Rabus B, et al. SRTM Mission Cross Comparison of X and C Band Data Properties . IEEE Geoscience and Remote Sensing Symposium, 2001, 2:751-753.


[23] Rosen P, Hensley S, Gurrola E, et al. SRTM C-band Topographic Data: Quality Assessments and Calibration Activities . IEEE Geoscience and Remote Sensing Symposium, 2001, 2: 739-741.


[24] Smith B, Sandwell D. Accuracy and Resolution of Shuttle Radar Topography Mission Data
[J]. Geophysical Research Letters, 2003, 30: 1467-1470.


[25] Sun G, Ranson K J, Kharuk V I, et al. Validation of Surface Height from Shuttle Radar Topography Mission Using Shuttle Laser Altimeter
[J]. Remote Sensing of Environment, 2003, 88: 401-411.
文章导航

/