遥感技术与应用

高光谱影像的 M-ICA 地物识别算法与应用

展开
  • 福建师范大学 地理科学学院,福州 350007
晏路明(1951-),男,湖南浏阳人,教授,博士生导师,主要从事自然地理、系统工程与GIS应用等方面的研究。E-mail:yanlm@163.com

收稿日期: 2010-09-27

  修回日期: 2010-11-30

  网络出版日期: 2011-02-25

基金资助

国家社会科学基金项目(03BTJ004);福建省教育厅A类基金项目(JA07037)资助。

Object Recognition Algorithm and Its Application on Hyperspectral Imagery Based on M-ICA

Expand
  • School of Geographical Sciences,Fujian Normal University,Fuzhou 350007,China

Received date: 2010-09-27

  Revised date: 2010-11-30

  Online published: 2011-02-25

摘要

高光谱遥感能以纳米量级宽度的窄波段及多达数百个的波段,对目标进行连续的光谱成像,但其海量数据及相邻波段高度相关造成的数据冗余却制约着它的应用。因此,对高光谱遥感影像分类须进行有效的处理、寻找最优特征,以增强地物的最大可分性。本文首先针对EO-1 Hyperion高光谱影像波段维数高、相关性强和数据量大等特点,利用独立成分分析(ICA)方法进行影像特征提取,并提出一种改进的ICA算法(M-ICA)。试验证明该算法的运算效率明显高于传统FastICA算法,其平均迭代次数和平均迭代时间分别仅为后者的14.49%和17.32%。然后为验证该方法在地物类型提取方面的有效性,分别对M-ICA的特征提取结果,主成分分析(PCA)的特征提取结果和未经特征提取的原始数据进行分类试验。结果表明,经M-ICA处理后的数据的地物类型提取总体精度达到90.57%,比后两者分别高出约10.8%和20.0%。由此表明,M-ICA是一种收敛速度很快的地物类型影像特征提取算法,能有效地实现对高光谱影像数据降维并提高地物特征的可分性。

本文引用格式

林志垒, 晏路明 . 高光谱影像的 M-ICA 地物识别算法与应用[J]. 地球信息科学学报, 2011 , 13(1) : 126 -132 . DOI: 10.3724/SP.J.1047.2011.00126

Abstract

Hyperspectral remote sensing is a frontier technology that is currently being investigated by researchers and scientists with regard to the detection and identification of minerals, vegetation, crops, ocean and other backgrounds. Hyperspectral remote sensing imagery has tens or even several hundreds of bands with bandwidth of nanometer level and contains abundant spectral information, but its redundancy made by mass data and high correlation in adjacent bands restricts the application of hyperspectral remote sensing. So, rational feature extraction will be required to find the optimal characteristics for maximum separability before the hyperspectral imagery classification. This thesis, taking Hyperion hyperspectral visible/infrared sensor aboard an earth observation satellite platform (EO-1) for example, applied independent component analysis (ICA) to carry on the feature extraction on Hyperion hyperspectral imagery with high dimensions, a strong correlation and huge data. Then, a modified independent component analysis algorithm (M-ICA) was put forward. Finally, the results by the algorithm (M-ICA) and principal component analysis (PCA) were compared with experimental data of selected test area, while using the maximum likelihood classification method to classify objects to verify its validity on object type extraction. Experimental results show that the operation efficiency of M-ICA algorithm is apparently higher than the traditional FastICA algorithm, which average iteration number and time are only 14.49% and 17.32% of the latter. In addition, the total classification accuracy of M-ICA result image is up to 90.57%, which is raised 10.8% and 20.0% more than that of PCA result image and that of Original Hyperion imagery. Therefore, the results indicate that M-ICA is a good feature extraction method with fast convergence speed, can effectively realize the dimension reduction of the hyperspectral imagery, and improve the objects separability in different categories.

参考文献


[1] 杨哲海,张雅争,宫大鹏,等. 基于Tabu搜索的高光谱影像特征选择
[J]. 海洋测绘,2006,26(4):11-14.


[2] 陈桂红,唐伶俐,姜小光. 高光谱遥感图像特征选择和提取方法的比较——基于试验区Barrax的HyMap数据
[J]. 干旱区地理,2006,29(1):143-149.


[3] 杨金成,张南. 独立成分分析技术综述
[J]. 舰船科学技术,2007,29(2):83-86.


[4] 杨竹青,李勇,胡德文.独立成分分析方法综述
[J]. 自动化学报,2002,28(5):762-772.


[5] Liu J,Chen S C,Zhou Z H.Progressive Principal Component Analysis
[J]. Lecture Notes in Computer Science,2004,3173:768-773.


[6] Jutten C,Herault J. Independent Component Analysis versus Principal Component Analysis . Proceeding European Signal Processing Conference,EUSIPC088,1988,643-646.


[7] Lee T W.Independent Component Analysis:Theory and Applications
[M]. Dordrecht:Kluwer Academic Publishers,1998.


[8] Hyvarinen A.Independent Component Analysis:Algorithms and Applications
[J]. Neural Networks,2000,13:411-430.


[9] Hyvarinen A,Karhunen J,Oja E. Independent Component Analysis
[M]. Canada:John Wiley & Sons, Inc,2001.


[10] Botelho S S C,Lautenschlger W,Figueiredo M B D. Dimensional Reduction of Large Image Datasets Using Non-linear Principal Components
[J]. Lecture Notes in Computer Science,2005,3578:125-132.


[11] Doggett T,Greeley R,Chien S,et al. Autonomous Detection of Cryospheric Change with Hyperion on-board Earth Observing-1
[J]. Remote Sensing of Environment,2006,101(4):447-462.


[12] 王芳,卓莉,黎夏,等.基于高光谱特征选择和RBFNN的城市植被胁迫程度监测
[J]. 地理科学,2008,28(1):77-82.


[13] 周雨霁,田庆久.EO-1 Hyperion 高光谱数据的质量评价
[J]. 地球信息科学,2008,10(5):678-683.


[14] 李显彬,姜小光,刘亮,等. 基于光谱重建的高光谱特征参数选择方法——以苏北地区Hyperion数据为例
[J]. 遥感学报,2007,11(4):589-594.


[15] 唐伯惠,姜小光,唐伶俐,等. 星载高光谱Hyperion数据在海滩涂调查应用中的分析
[J]. 地球信息科学,2004,6(2):81-87.


[16] Goodenough D G,Dyk A,Niemann K O,et al. Processing Hyperion and ALI for Forest Classification
[J]. IEEE Transactions on Geoscience Remote Sensing,2003,41(6):1321-1331.


[17] Galvao L S, Formaggio A R,Tisot D A.Discrimination of Sugarcane Varieties in Southeastern Brazil with EO-1 Hyperion Data
[J]. Remote Sensing of Environment,2005,94(4):523-534.
文章导航

/