地球信息综合分析

四川石棉森林碳密度空间数据知识挖掘及分布特征分析

展开
  • 四川师范大学西南土地资源评价与监测教育部重点实验室遥感与GIS中心, 成都 610068
杨存建(1967-),男,博士,教授,主要从事遥感和地理信息系统的应用研究.E-mail: yangcj2008@126.com

收稿日期: 2011-07-09

  修回日期: 2011-09-09

  网络出版日期: 2011-10-25

基金资助

国家自然科学基金项目"基于小班对象的森林资源数据库多源遥感更新研究"(40771144)。

Discovering Knowledge of Forest Carbon Density in Shimian County of Sichuan Province Based on Spatial Database

Expand
  • Research Center of Remote Sensing and Geographic Information Systems, Key Laboratory of Land Resources Evaluation and Monitoring in Southwest under Ministry of Education, Sichuan Normal University, Chengdu 610068, China

Received date: 2011-07-09

  Revised date: 2011-09-09

  Online published: 2011-10-25

摘要

森林植被碳密度是衡量森林生态系统服务功能和产品供给功能高低的一个重要指标。本文以四川省石棉县为例,在森林资源二类调查数据的基础上,提出建立森林植被生物量、碳量及其密度GIS数据库,开展其碳密度分布知识发现的研究,从中发现了该县碳密度分布知识。该县有林地森林植被碳量达到364万t,冷杉、云杉、铁杉和桦木占总碳量的83%;有林地森林植被碳密度为40t/hm2,其云杉和冷杉分别为47t/hm2和43t/hm2;碳量随坡度等级的增加而增加,25°以上坡地的森林植被碳量占总碳量的91%;25°以上森林植被碳密度比25°以下森林植被的碳密度高。微度与中度土壤侵蚀下的森林植被碳密度较高,在42t/hm2以上;剧烈与极强侵蚀下的森林植被碳密度相对较低,为29t/hm2。森林植被碳密度与郁闭度之间在0.05的水平上显著相关。研究表明,该县冷杉与云杉林保护较好,25°以上区域的森林保护较好,因此,具有较高的森林植被碳密度。森林植被碳密度越高的区域,其水土侵蚀强度越低。该研究成果对加强该县森林资源的保护,特别是该县国家与省级自然保护区的保护建设具有重要意义。

关键词: 生物量; 碳密度; 森林

本文引用格式

杨存建, 倪静, 张洋, 牟琳 . 四川石棉森林碳密度空间数据知识挖掘及分布特征分析[J]. 地球信息科学学报, 2011 , 13(5) : 579 -585 . DOI: 10.3724/SP.J.1047.2011.00579

Abstract

Forest carbon density is an important indicator reflecting the level of forest ecosystem function in ecological service and product supply. The methodology proposed here was used to create geographic database of forest biomass carbon storage, biomass density and carbon storage density based on forest resource investigations, and to discover the knowledge of forest carbon density distribution based on the geographic database. The geographic database of forest biomass carbon storage, biomass density and carbon storage density were created, and the knowledge of forest carbon density distribution was discovered in Shimian County by using the methodologies. There was 3.64×106ton C in the forest of the county, and there was 83% in fir, spruce, hemlock and birch forest. The carbon density of the woodland was 40 t/hm2, that of the spruce forest was 47 t/hm2, and that of fir forest was 43 t/hm2. With the increasing of slope, carbon storage increased, and with slope above 25° accounted for 91% of the total carbon storage. Carbon density in slopes above 25°was larger than that below 25°. Carbon density of the forest lands with very slight and moderate soil erosion was 42 t/hm2, higher than those with severe soil erosion, say 29 t/hm2. Forest carbon density significantly related to its canopy density at confidence level of 0.05. It was shown that spruce and fir forests were protected well, and of higher carbon density. The higher the carbon density, the weaker the soil erosion was there. The results played an important role in protecting forest resources, especially for provincial and national nature reserves in that county.

Key words: forest; biomass; carbon density

参考文献

[1] Woodwell G M, Whittaker R H, Reiners W A, et al. The Biota and the World Carbon Budget[J]. Science, 1978, 199: 141-146.

[2] Olson J S, Watts J A, Allison L J. Carbon in Live Vegetation of Major World Ecosystems . Report ORNL-5862 Oak Ridge National Laboratory, Oak Ridge, Tenn. 1983,15-25.

[3] 刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20 (5):733-740.

[4] 杨海军,邵全琴,陈卓奇,等.森林碳蓄积量估算方法及其应用分析[J].地球信息科学学报,2007,9(4):5-12.

[5] 徐天蜀.基于遥感信息的森林生物量、碳储量估测技术研究[J].林业调查设计,2008,33(3):11-13.

[6] 徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究[J]. 地理科学进展, 2007, 26(6):1-10.

[7] 方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.

[8] 樊登星,余新晓,岳永杰,等.北京市森林碳储量及其动态变化[J].北京林业大学学报,2008,(S2):117-120.

[9] 张茂震,王广兴.浙江省森林生物量动态[J].生态学报, 2008,28(11):5665-5674.

[10] 张茂震,王广兴,刘安兴.基于森林资源连续清查资料估算的浙江省森林生物量及生产力[J].林业科学, 2009,45(9):13-17.

[11] 郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量[J].生态学报,2002, 22(11):1832-1839.

[12] 徐新良, 曹明奎, 李克让.森林生物量遥感估算与应用分析[J].地球信息科学学报,2006,8(4):122-128.

[13] Hame T, Sallli A, Anderss on K, et al. A New Methodology for the Estimation of Biomass of Conifer Dominated Boreal Forest Using NOAA AVHRR Data[J]. Int. J. Remote Sense, 1997, 18(15):3211(2)-3243.

[14] Field C B, Randerson J T, Malstrom C M. Global Net Primary Production: Combining Ecology and Remote Sensing[J]. Remote Sensing of Environment, 1995, 51: 742–88.

[15] 杨存建,刘纪远,张增祥.热带森林植被生物量遥感估算探讨[J].地理与地理信息科学,2004, 20(6):22-25.

[16] 张志东,臧润国.基于植被指数的海南岛霸王岭热带森林地上生物量空间分布模拟[J].植物生态学报,2009,33(5):833-841.

[17] 王立海,邢艳秋.基于人工神经网络的天然林生物量遥感估测[J].应用生态学报,2008, 19(2):261-266.

[18] 黄从德,张健,杨万勤,等.四川省森林植被碳储量的空间分异特征[J].生态学报,2009, 29(9):5115-5121.
文章导航

/