地球信息综合分析

鄱阳湖水动力形态结构模式的模拟系统设计与应用

展开
  • 1. 鄱阳湖湿地与流域研究教育部重点实验室,南昌 330022;
    2. 江西师范大学地理与环境学院,南昌 330022;
    3. 江西省吉安市气象局,吉安 343000
赖格英(1963-),男,江西省寻乌县人,教授,博士,研究方向为湖泊环境模拟。E-mail:laigeying@126.com

收稿日期: 2010-05-01

  修回日期: 2011-07-10

  网络出版日期: 2011-08-23

基金资助

国家自然科学基金项目(40971266);科技部科技支撑计划课题(2007BAC23B05-04);江西省科技厅国际合作课题(05201209)。

Research and Development of Poyang Lake Hydrodynamic Modeling System Based on Integrated Mode of Moving Boundary

Expand
  • 1. Key Laboratory of Poyang Lake Wetland and Watershed Research, Nanchang 330022, China;
    2. School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China;
    3. Jian weather bureau of Jiangxi Province,Jian 343000,China

Received date: 2010-05-01

  Revised date: 2011-07-10

  Online published: 2011-08-23

摘要

在一般的水动力模拟中,入湖河口的数量和位置基本是不变的。鄱阳湖水位高动态变化的特征,导致了入湖河口数量和位置变化等特殊的运动边界问题。本文在分析水动力模拟的湖泊形态结构特征的基础上,概化了高水位湖相型、中水位涨水型、中水位退水型和低水位河相型4种水动力形态结构模式,以解决高水位变幅导致的边界移动、入湖河口数量和位置变化等运动边界序列问题,4种水动力形态结构模式之间的运动边界问题,采用在计算流体力学领域中现有的干-湿网格法运动边界处理技术,从而形成浅水湖泊复杂边界高动态水位条件下复合模式的运动边界处理方法;并利用MapWinGIS开发控件,实现了不同模式的边界拟合正交曲线格网的生成与模拟结果的可视化;系统采用面向对象的Visual Studio C#和Visual Fortran编程语言,以松散耦合方式将数据前后处理与交互模块与水动力模拟的核心模块进行集成。利用集成的鄱阳湖水动力模拟系统并采用低水位河相型模式对1999年12月6-14日的鄱阳湖水动力进行了模拟,模拟结果表明系统具有较好的运动边界处理效果。

本文引用格式

赖格英, 潘瑞鑫, 黄小红 . 鄱阳湖水动力形态结构模式的模拟系统设计与应用[J]. 地球信息科学学报, 2011 , 13(4) : 447 -454 . DOI: 10.3724/SP.J.1047.2011.00447

Abstract

Based on analysis of morphological structure and hydrological characteristics of Poyang Lake, four generalized patterns of the morphological structure and hydrological characteristics were presented for hydrodynamic numerical simulation to solve these problems of moving boundary resulted from two changes of the number and positions of estuaries due to high amplitudes of water level changes of Poyang Lake, which are lacustrine facies pattern in high water level, water-rising pattern in medium water level, water-falling pattern in medium water level,and fluvial facies pattern in low water level. The internal moving boundary problem of each morphological structure and hydrological characteristics pattern was settled by using the existing dry-wet grid method on computational fluid dynamics. Thereby, an integrated method to deal with complicated moving boundary due to high amplitudes of water level changes was presented for shallow lakes. In order to develop Poyang Lake hydrodynamic modeling system, an algorithm based on the open-source component of MapWinGIS for the boundary fitted orthogonal curvilinear grid of each morphological structure and hydrological characteristics pattern was developed for the needs of hydrodynamic simulation and results visualization. Two main modules of Poyang Lake hydrodynamic modeling system, the module of data pro-post processing and data interaction and the module of hydrodynamic numerical simulation were integrated in the form of loose coupling using the programming platforms of Visual C# and Visual Fortran. In order to verify the simulation effect and precision, an experimental simulation for Poyang Lake with gauged data in December 6-14, 1999 was carried out using developed Poyang Lake hydrodynamic modeling system. The simulated results show that not only the simulation time is obviously shorted but also the simulated effects, which include lake water boundary, water level, depth and current, are better because of the use of integrated moving boundary method.

参考文献

[1] 张昊, 张代钧. 复杂水环境模拟研究与发展趋势[J]. 环境科学与管理,2010,35(4):24-28.

[2] 刘永,郭怀成,范英英,等.湖泊生态系统动力学模型研究进展[J]. 应用生态学报,2005,16(6):1169-1175.

[3] 万金保, 李媛媛.湖泊水质模型研究进展[J].长江流域资源与环境.2007,16(6):806-809.

[4] 赖锡军,姜加虎,黄群. 洞庭湖地区水系水动力耦合数值模型[J]. 海洋与湖沼,2008,39(1):74-80.

[5] Ji Z G, Hu G D, Shen J, et al. Three-dimensional Modeling of Hydrodynamic Processes in the St. Lucie Estuary [J]. Estuarine, Coastal and Shelf Science, 2007,73(1-2): 188-200.

[6] Cerco C F. Phytoplankton Kinetics in the Chesapeake Bay Eutrophication Model[J]. Water Quality and Ecosystem Modeling, 2001, 1(4):5-49.

[7] 储鏖. Delft3D 在天文潮与风暴潮耦合数值模拟中的应用[J], 海洋预报,2004,21(3):29-36.

[8] 栗苏文, 李红艳, 夏建新. 基于Delft3D 模型的大鹏湾水环境容量分析[J]. 环境科学研究, 2005,18(5):91-95.

[9] 谢锐,吴德安,严以新,等. EFDC 模型在长江口及相邻海域三维水流模拟中的开发应用[J]. 水动力学研究与进展, 2010,25(2):165-174.

[10] 齐珺, 杨志峰, 熊明,等. 长江水系武汉段水动力过程三维数值模拟[J]. 水动力学研究与进展,2008,22(2):213-219.

[11] Jin K R, Hamrick J H, Tisdale T. Application of Three-Dimensional Hydrodynamic Model for Lake Okeechobee[J]. Journal of Hydraulic Engineering, 2000, 126(3):758-771.

[12] 《鄱阳湖研究》编委会. 鄱阳湖研究[M]. 上海:上海科学技术出版社,1988.

[13] Ji Z, Morton M,Hamrick M J. Wetting and Drying Simulation of Estuarine Processes[J]. Estuarine, Coastal and Shelf Science, 2001, 3(4):683-700.

[14] 董耀华. 河势贴体河道平面二维正交网格生成方法的研究及应用[J]. 长江科学院院报,2001,18(4):14-17.

[15] 黄炳彬,方红卫,刘斌. 复杂边界水流数学模型的斜对角笛卡尔方法[J].水动力学研究与进展,2003,A18(6):679-685.

[16] 刘春,卢群,吴杭彬. 基于开源GIS 的交通分析软件设计[J]. 软件导刊,2009,8(1):167-169.
文章导航

/