地理信息系统与应用

栅格数据地学可视化分析环境的构建分析

展开
  • 1. Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA;
    2. 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 100101
杜斐(1984-),男,博士研究生,研究方向是人工智能与GIS的结合,地学可视化分析。 E-mail: duffy.geo@gmail.com

收稿日期: 2011-03-15

  修回日期: 2011-06-07

  网络出版日期: 2011-08-23

基金资助

国家自然科学基金项目(40971236);国际科技合作计划专题项目(2010DFB24140);"973"项目(2007CB407207);威斯康辛大学麦迪逊分校Vilas Associate Award 和Hammel Faculty Fellow Award。

The Construction of Geo-Visual Analysis Environment for Raster Data

Expand
  • 1. Department of Geography, University of Wisconsin Madison, 550 North Park Street, Madison, WI 53706, USA;
    2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2011-03-15

  Revised date: 2011-06-07

  Online published: 2011-08-23

摘要

以遥感数据、数字高程数据等为代表的栅格数据获取技术的进步,以及栅格数据本身适合地学模拟的特点,使得栅格数据应用越来越广泛。当前以定量计算为主的方法难以有效支撑栅格数据分析任务,将可视化引入,充分利用人机协同优势,形成栅格数据地学可视化分析环境是一个较好的解决途径。但是,栅格数据大数据量的特征会引起属性空间可视化时的遮挡问题,分析者难以通过可视化分析环境有效识别有意义的地学模式。本研究主要针对这一问题,在现有方法基础上,提出了一种基于体绘制的层次性栅格数据地学可视化分析环境构建方法。当栅格数据集较大时,采用体绘制方法表达密度信息,避免大数据量引起的遮挡问题;在分析者通过人机交互缩小感兴趣数据集后,采用平行坐标法进行可视化,支持细节模式的发现。新方法所构建的原型系统被成功应用于从地形数据集中发现代表土壤类型的聚类模式,从而验证了方法的有效性。

本文引用格式

杜斐, 朱阿兴, 裴韬, 秦承志 . 栅格数据地学可视化分析环境的构建分析[J]. 地球信息科学学报, 2011 , 13(4) : 472 -479 . DOI: 10.3724/SP.J.1047.2011.00472

Abstract

Developments of raster data capture technologies and demands from application fields call for advanced raster data analysis methods. Automatic algorithms often cannot well support this need due to the complexity of geographical phenomenon and limitations of algorithms themselves. Geo-visual analytics that involve human's visual analytical capability in data analysis attracts attention in recent years. However, Raster datasets usually have large amount of pixels, which may cause serious clotting problem in visualizing raster data in attribute space and thus it is difficult for analysts to visually detect patterns in raster datasets. The research reported here mainly focuses on this problem. Based on existing solutions and current computer graphics technologies, we propose a new volume-rendering-based hierarchical approach to construct interactive geo-visual analysis environment for raster data. In the first hierarchy, volume rendering is used to express density information instead of original pixels in attribute space to avoid clotting problem. In the second hierarchy, after analysts select relatively small-sized sub-datasets using some interaction tools, parallel coordinates plot is used to support analysts to capture detailed patterns in attribute space. On different hierarchies of this progressive visual interface, attribute space visualizations are linked with geographic space visualization to facilitate the detection of patterns with geographic meanings. Software prototype was developed based on this idea and then applied in a terrain dataset to find small clusters that may represent possible soil types in digital soil mapping. The case study shows that the proposed approach can well support the progressive detection of geographic cluster patterns that may be neglected by automatic clustering algorithms and thus demonstrates effectiveness of the proposed approach.

参考文献

[1] Longley P A, Goodchild M F, Maguire D J, et al. Geographic Information Systems and Science, Second Edition[M]. Chichester: John Wiley & Sons, 2005, 74-76.

[2] Levoy M. Display of Surfaces from Volume Data[J]. IEEE Computer Graphics and Applications, 1998, 8(3): 29-37.

[3] Inselberg A, Dimsdale B. Parallel Coordinates: A Tool for Visualizing Multi-dimensional Geometry. //Proc. IEEE Conf. on Visualization '90, Los Alamitos, 1990, 361-378.

[4] Kropatsch W, Bischof H, Englert R. Hierarchies. //Kropatsch W, Bischof H (eds.). Digital Image Analysis: Selected Techniques and Applications. New York: Springer, 2000, 211-230.

[5] Andrienko G, Andrienko N, Gitis, V. Interactive Maps for Visual Exploration of Grid and Vector Geodata[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2003, 57(5): 380-389.

[6] Zhang X, Pazner M. An Icon-based Co-geovisualization Technique for Multivariate Geospatial Data. //Proc. 7th International Workshop on Geographical Information System Conference, Beijing, 2007, 310-315.

[7] Healey C G, Enns J T. Building Perceptual Textures to Visualize Multidimensional Datasets. //Proc. IEEE Conf. on Visualization '98, Research Triangle Park, 1998,111-118.

[8] Wegman E J. Visual Data Mining[J]. Statistics in Medicine, 2003, 22(9): 1383-1397.

[9] Keim D A. Pixel-oriented Visualization Techniques for Exploring Very Large Databases[J]. Journal of Computational and Graphical Statistics, 1996, 5(1): 58-77.

[10] 芮小平, 张彦敏. 空间信息可视化挖掘研究[J]. 测绘科学, 2005, 30(2): 64-66.

[11] 黄勇奇, 赵追. 遥感观测数据的探索性分析研究[J]. 遥感信息,2006(5): 24-26.

[12] Symanzik J, Cook D, Klinke S, et al. Exploration of Satellite Images in the Dynamically Linked ArcView/XGobi/XploRe Environment. //Proc. The Third Annual U.S. Army Conference on Applied Statistics, George Mason University, Virginia, 1998, 22-24.

[13] Lucieer A, Kraak M. Interactive and Visual Fuzzy Classification of Remotely Sensed Imagery for Exploration of Uncertainty[J]. International Journal of Geographical Information Science, 2004, 18(5): 491-512.

[14] Schowengerdt R A. Remote Sensing: Models and Methods for Image Processing (Second Edition)[M]. San Diego: Academic Press, 1997,459-461.

[15] Fua Y H, Ward M O, Rundensteiner E A. Hierarchical Parallel Coordinates for Visualizing Large Multivariate Data Sets. //Proc. IEEE Conf. on Visualization '99, San Francisco, California, 1999, 43-50.

[16] Shneiderman B. The Eyes Have It: A Task by Data Type Taxonomy for Information Visualization. //Proc. IEEE Symp. on Visual Language '96, Boulder, Colorado, 1996, 336-343.

[17] McBratney A B, Mendona Santos M L, Minasny B. On Digital Soil Mapping[J]. Geoderma, 2003, 117 (1-2): 3-52.

[18] Zhu A X, Yang L, Li B L, et al. Purposive Sampling for Digital Soil Mapping for Areas with Limited Data. //Hartemink A E, McBratney A. and Mendonca Santos M L (eds.). Digital Soil Mapping with Limited Data. New York: Springer, 2008, 233-246.

[19] 杨琳, 朱阿兴, 李宝林,等.应用模糊C均值聚类获取土壤制图所需土壤-环境关系知识的方法研究[J].土壤学报, 2007, 44(5): 16-23.
文章导航

/