地理模型与模拟应用

气温插值中不同空间插值方法的适用性分析——以江苏省为例

展开
  • 1. 南京大学地理与海洋科学学院,南京 210093;
    2. 南京大学国际地球系统科学研究所,南京 210093;
    3. 江苏省气象台,南京 210008

收稿日期: 2010-11-30

  修回日期: 2011-05-23

  网络出版日期: 2011-08-23

基金资助

中国科学院资源与环境信息系统国家重点实验室开放基金(2009-2011);江苏高校优势学科建设工程资助项目;中央高校基本科研业务费专项资金。

Suitability Assessment of Different Interpolation Methods in the Gridding Process of Station Collected Air Temperature: A Case Study in Jiangsu Province, China

Expand
  • 1. School of Geographic and Oceanographic Sciences in Nanjing University, Nanjing 210093, China;
    2. The International Institute of Earth System Science in Nanjing University, Nanjing 210093, China;
    3. Jiangsu Meteorological Bureau, Nanjing 210008, China

Received date: 2010-11-30

  Revised date: 2011-05-23

  Online published: 2011-08-23

摘要

气温是最重要的气象因子之一,空间插值为台站气象数据降尺度提供了有效方法。本文利用江苏省67个气象台站2003年的逐日气温资料计算逐月平均气温和年平均气温,结合空间分辨率为30m×30m的DEM数据,分别利用反距离权重法、张力样条插值法、普通克里格插值法和协同克里格插值法,对月和年平均气温进行插值,并利用交叉验证法对插值精度进行了验证。研究结果表明,考虑空间自相关性的普通克里格法的插值精度明显优于反距离权重法和张力样条插值法;而协同克里格法由于考虑了经纬度、距海岸距离和高程等影响气温空间分布的局地因素,其插值精度一般略优于普通克里格法,尤其是在站点稀疏的情况下,协同克里格的优势更加明显;由于受海陆分布和东亚季风的影响,江苏省气温的空间分布与距海岸距离有关,在利用协同克里格进行空间插值时,距海岸距离也是一个值得关注的因素。

本文引用格式

彭彬, 周艳莲, 高苹, 居为民 . 气温插值中不同空间插值方法的适用性分析——以江苏省为例[J]. 地球信息科学学报, 2011 , 13(4) : 539 -548 . DOI: 10.3724/SP.J.1047.2011.00539

Abstract

Air temperature is an important parameter observed in metrological stations, and there are many ways to improve the precision of air temperature interpolation result. In this paper by using the air temperature data at 67 meteorological stations in Jiangsu Province in the year of 2003 and digital elevation model (DEM) data with spatial resolution of 30m×30m, four common interpolation methods, including Inverse Distance Weighting (IDW), Spline with tension (Spline), Ordinary Kriging (OK) and Co-Kriging (CK), were used to interpolate the monthly and yearly mean air temperature and the precision of those four methods was compared by using cross validation method. The results showed that OK has a much higher precision than IDW and Spline, indicating the method accounting for spatial self-correlation is more accurate than others. Four auxiliary variables, including latitude, longitude, distance from the coast and elevation, were selected for CK, and correlation analysis showed that the monthly mean air temperatures are best correlated with latitude, and the three other variables followed. As the four variables are correlated with each other, principal component analysis (PCA) was conducted in this paper. The first principal component mainly representing longitude and distance from the coast and the second one mainly representing latitude were utilized as the optimized auxiliary variables for Co-Kriging interpolation in most months except March whose input is only the second one, April and July whose inputs are the second and the fourth principal components. The results indicated that the precision of CK which makes good use of related auxiliary factors is slightly higher than that of OK; while it is obviously better than OK where there are fewer stations and is a potential ideal method for air temperature interpolation. The results of this paper also showed that distance from the coast is a critical factor to the spatial pattern of air temperature in Jiangsu, China, which should be an auxiliary variable for CK.

参考文献

[1] 廖顺宝, 李泽辉. 气温数据栅格化中的几个具体问题[J]. 气象科技, 2004, 32(5): 352-356.

[2] 白爱娟, 翟盘茂. 中国近百年气候变化的自然原因探讨[J]. 气象科学, 2007, 27(5): 584-589.

[3] 张燕, 张秀丽, 唐红昇, 等. 江苏夏季气温异常的时空变化特征[J]. 气象科学, 2009, 29(1): 133-137.

[4] 蔡福, 于贵瑞, 祝青林, 等. 气象要素空间化方法精度的比较研究——以平均气温为例[J]. 资源科学, 2005, 27(5): 173-179.

[5] 谭继强, 丁明柱. 空间数据插值方法的评价[J]. 测绘与空间地理信息, 2004, 27(4): 11-13.

[6] 蔡迪花, 郭铌, 李崇伟. 基于DEM的气温插值方法研究[J]. 干旱气象, 2009, 27(1): 10-17.

[7] 夏智宏, 刘可群, 梁益同, 等. 基于Arc Engine和DEM辅助的气温网格化的设计与实现[J]. 测绘与空间地理信息系统, 2008, 31(6): 86-88.

[8] 杨凤海, 孙彦坤, 于太义, 等. 近10年黑龙江省气温的时空变异分析[J]. 地球信息科学学报, 2009, 11(5): 585-596.

[9] 汤国安, 杨昕. ArcGIS地理信息系统空间分析实验教程[M]. 北京: 科学出版社, 2006,372-388.

[10] 朱会义, 刘述林, 贾绍凤. 自然地理要素空间插值的几个问题[J]. 地理研究, 2004,23(4): 425-432.

[11] 王劲峰,等. 空间分析[M].北京: 科学出版社, 2006,17-29.

[12] Chang Kang-tsung. Introduction to Geographic Information Systems (third edition, Chinese translation by Chen Jianfei et al) [M]. Beijing: Tsinghua University Press, 2009,310-312.

[13] Johnston K, ver Hoef J M, Krivoruchko K, et al. Using Arc GIS Spatial Analyst[M]. CA, USA: Environmental Systems Research Institute Inc., 2001,136-148.

[14] 李军, 游松财, 黄敬峰. 中国1961-2000年月平均气温空间插值方法和空间分布[J]. 生态环境, 2006, 15(1): 109-114.

[15] 张仁铎. 空间变异理论及其应用[M]. 北京: 科学出版社, 2005,13-88.

[16] 刘贤赵, 张安定, 李嘉竹. 地理学数学方法[M]. 北京: 科学出版社, 2009,127-138.

[17] 徐建华. 计量地理学[M]. 北京: 高等教育出版社, 2006,131-151.

[18] Myers D E. Matrix Formulation of Co-Kriging[J]. Mathematical Geology, 1982, 14(3): 249-257.

[19] Royle J A, Berliner L M. A Hierarchical Approach to Multivariate Spatial Modeling and Prediction[J]. Journal of Agricultural, Biological, and Environmental Statistics, 1999, 4(1):29-56.

[20] ver Hoef J M, Cressie N. Multivariate Spatial Prediction[J]. Mathematical Geology, 1993, 25(2): 219-240.

[21] 关宏强, 蔡福, 王阳, 等. 短时间序列气温要素空间插值方法精度的比较研究[J]. 气象与环境学报, 2007, 23(5): 13-16.
文章导航

/