模型与算法应用

线状空间数据传输的几何相似性度量算法与实验分析

展开
  • 1. 山西煤炭运销集团大同有限公司, 大同 037004;
    2. 山西大同大学矿业工程系, 大同 037003;
    3. 中南大学测绘与国土信息工程系, 长沙 410083
孙金礼(1964-),男,汉族,山西原平人,硕士,副教授,现主要从事空间地物相似性度量和地理空间数据传输理论与方法。E-mail: chenjie_301@126.com

收稿日期: 2011-05-03

  修回日期: 2011-08-31

  网络出版日期: 2011-10-25

The Algorithms of Geometry Similarity Measurement and Experimental Analysis for Linear Spatial Data Transmission

Expand
  • 1. Shanxi Coal Tonsportation and sales Group Datong Co., LTD. Datong 037004, China;
    2. Department of Mining Engineering, University of Shanxi Datong, Datong 037003, China;
    3. Department of Surveying and Geo-informatics, Central South University, Changsha 410083, China

Received date: 2011-05-03

  Revised date: 2011-08-31

  Online published: 2011-10-25

摘要

同一地物在不同比例尺或者不同来源的地图上通常存在着相似性,对于图形几何形似性度量方法的研究有利于地图编制、查询、匹配、更新。线状地物要素在地图中占有很大的比例,因此,本文以线状空间目标为例,在前人的基础上给出了线状空间数据的几何图形相似性度量模型:(1)以差异距离作为相似性特征的位置相似度;(2)以分形维数作为相似性特征的形状相似度;(3)以长度或者周长作为相似性特征的大小相似度。相对于(3)大小相似度而言,(1)位置相似度、(2)形状相似度综合考虑了几何图形整体统计的方法和局部几何特征结构。完成多尺度传输的线状空间数据几何相似性度量实验,并对数据传输量与几何相似性度量方法进行比较,实验结果表明:基于广义Hausdorff距离模型的中位数Hausdorff距离的位置相似性对于空间数据渐进性传输具有稳定性和可行性。最后,总结了本文的研究成果,并展望了该方向进一步研究的若干问题。

本文引用格式

孙金礼, 陈杰, 邓敏 . 线状空间数据传输的几何相似性度量算法与实验分析[J]. 地球信息科学学报, 2011 , 13(5) : 701 -706 . DOI: 10.3724/SP.J.1047.2011.00701

Abstract

Transmission and expression of multi-scale spatial data is of greatly significance for the quality of the evaluation of progressive transmission of spatial information by geometric similarity measurement, which has plagued GIS researchers for a long time. The same feature from different sources or different scales is usually similar on the map, so the similarity measurement of geometry shape is conducive to the preparation, query, match and update of the map. The line features on the map are in many high proportions, so this paper proposes the line features geometry similarity measurement models of spatial data on the basis of the predecessors. And then, a reclassification of geometric similarity measurement is made from the consideration of distance, shape, length. The corresponding geometric similarity measurements are further developed, including: (1) differences in distance as the similarity, considering shape differences and relative positions of spatial objects; (2) the fractal dimension as a similarity of shape similarity, to a large extent, being able to express morphological characteristics of spatial objects; (3) the length or girth size as the similarity. Relative to (3) length similarity, (1) position similarity and (2) shape similarity are both considered the overall statistical methods and local geometry structure. To complete the linear multi-scale geometric similarity measurement experiments of spatial data, and compare the relationship of different transmission volume and geometric similarity measurement by multi-scale linear features as the experimental data, the experimental results show that location similarity based on generalized Hausdorff distance model is feasibility to progressive transmission of spatial data. The change for location similarity measurement is smaller than those with other methods based on the same amounts of data transmission, indicating that the algorithm (generalized Hausdorff distance model) solves the similarity problem of the same feature. Finally, this paper summarizes main findings, and highlights further research directions in the near future, such as match, query, update and other issues for multi-scale spatial data.

参考文献

[1] 唐炉亮,李清泉,杨必胜. 空间数据网络多分辨率传输的几何图形相似性度量[J]. 测绘学报, 2009, 38(4): 336-340.

[2] Pavlidis T. A Review of Algorithms for Shape Analysis[J]. Computer Graphics and Image Processing, 1978, 7:243-258.

[3] Yang L, Albregtsen F. Fast Computation of Invariant Geometric Moments: A New Method Giving Correct Results . Proc 12th IAPR Int. Conf. Pattern Recognition, 1994(1): 201-204.

[4] Persoon E, Fuk S. Shape Discrimination Using Fourier Descriptors[J]. IEEE Transaction on System, 1977, 7 (3): 170-179.

[5] Arkin E, Chew P, et al. An Efficiently Computable Metric for Comparing Polygonal Shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(3): 209-215.

[6] Atallah M J. A Linear Time Algorit hm for t he Hausdorff Distance between Convex Polygons[J]. Information Processing Letters, 1983, 17:207-209.

[7] 杨春成, 张清浦,等. 顾及几何形状相似性的简单多边形最近距离计算方法[J]. 测绘学报, 2004, 33 (4): 311-318.

[8] Mount D M, Netanyahu N S, Moigne J L. Efficient Algorithms for Robust Point Pat tern Matching and Applications to Image Registration[J]. Pattern Recognition, 1999, 32:17-38.

[9] Perkins W. A Model-based Vision System for Industrial Parts[J]. IEEE Transaction on Computer, 1978, 27:126-143.

[10] Constabile M F, Guerra C,
et al. Matching Shape: A Case Study in Time-varying Images[J]. Computer Vision Graphics & Image Processing, 1985, 29: 296-310.

[11] Ballard D H. Generalizing the Hough Transform to Detect Arbitrary Shapes[J]. Pattern Recognition, 1981, 13 (2): 111-122.

[12] Young S S, Scott P D,
et al. Object Recognition Using Multilayer Hopfield Neural Network[J]. IEEE Transaction on Image Processing, 1997, 6 (3): 357-372.

[13] Tan G Z, Gao W,
et al. Similarity Measures for Plygons Representation[J]. Chin J CAD & CG, 1995,7 (2): 96-102.

[14] Frank A U. Qualitative Spatial Reasoning About Distances and Directions in Geographic Space[J]. Journal of Visual Languages and Computing, 1992, 3(4):343-371.

[15] Chen X Y, Doihara T, Nasu M. Spatial Rela-tions of Distance between Arbitrary Objects in 2D/3D Geographic Spaces Based on the Hausdorff Metric . LIESMARS'95, Wuhan, 1995.

[16] 邓敏,钮沭联,李志林. GIS空间目标的广义Hausdorff距离模型[J], 武汉大学学报: 信息科学版, 2007, 7(32): 641-645.

[17] 郝燕玲,唐文静,赵玉新,等. 基于空间相似性的面实体匹配算法研究[J],测绘学报, 2008, 37 (4): 501-505.

[18] Wentze E A. Shape Analysis in GIS . Proc of AC2SM/ASPRS, 1997,204-213.

[19] Foley H. A Multiple Criteria Based Approach to Performing Conflation in Geographical Information Systems . New Orleans: Tulane University, 1997.
文章导航

/