遥感技术与应用

夜间灯光遥感数据的GDP空间化处理方法

展开
  • 1. 中国科学院遥感应用研究所遥感科学国家重点实验室, 北京 100101;
    2. 中国科学院研究生院, 北京 100049
韩向娣(1986-),女,中国科学院遥感应用研究所,硕士研究生。主要研究社会经济数据在遥感中的应用。 E-mail:laohan198631@163.com

收稿日期: 2011-05-30

  修回日期: 2011-12-09

  网络出版日期: 2012-02-24

基金资助

国家科技支撑计划项目——主体功能区动态监测评价系统研究(2008BAH31B03)。

GDP Spatialization in China Based on Nighttime Imagery

Expand
  • 1. The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2011-05-30

  Revised date: 2011-12-09

  Online published: 2012-02-24

摘要

随着夜间灯光遥感数据的应用日渐成熟和资源环境研究领域,对空间型社会经济数据的需求增加,利用相关分析和回归分析的方法,首次定量探讨夜间灯光数据与统计型的社会经济数据的空间关系。为提高模型精度,按照我国省级行政边界分区建模,分析全国县级的地区生产总值、第一产业、第二产业、第三产业分别与夜间灯光指数的空间相关关系,最终建立全国的1km GDP密度图。结果表明,全国范围的夜间灯光数据与第一产业的相关性不明显,相关系数0.554,模型拟合效果差,R2为0.306;夜间灯光数据与地区生产总值、第二产业、第三产业均有明显的对数线性关系,尤其是与第二产业和第三产业之和,相关系数为0.824,R2为0.679。利用分区模型估算,生成的GDP密度图能较完整地反映全国社会经济分布详况,以及宏观分布特征。

本文引用格式

韩向娣, 周艺, 王世新, 刘瑞, 姚尧 . 夜间灯光遥感数据的GDP空间化处理方法[J]. 地球信息科学学报, 2012 , 14(1) : 128 -136 . DOI: 10.3724/SP.J.1047.2012.00128

Abstract

Resources and environmental sciences require greatly the spatialized socio-economic data sets which are always obtained from administrative regions at national or provincial level, and accurate estimates of the magnitude and spatial distribution of economic activity have many useful applications. Developing alternative methods for making estimates of gross domestic product (GDP) may prove to be useful when other measures are of suspect accuracy or unavailable. Based on the summary and analysis of existing economic activity spatialization approaches and nighttime imagery applications in economic activity, this research explores the potential for estimating the GDP using relationship between the spatial patterns of nighttime satellite imagery and GDP in China by correlation analysis and regression analysis using concerned data processing software. With the regional differences of China's economic development, logarithmic regression models have been established between different night light indexes and GDP, primary industry, secondary industry, tertiary industry and the sum of secondary industry and tertiary industry at the provincial level. A clear logarithmic linear relationship between nightlight imagery and GDP, especially the correlation coefficient of night light index and the sum of secondary industry and tertiary industry is 0.824 and R2 of them is 0.679 at national level, suggests that this method is available and feasible to estimate the spatial distribution of economic activity such as GDP. The result, 1-km grid GDP map of China based on nighttime light data, by comparing with the other GDP spatialization approaches, shows the obvious advantage to reflect complete details and characteristics of the national secondary industry and tertiary industry distribution, which is extending the field of nighttime light data research and applications for the socio-economic data in resources and environmental sciences.

参考文献

[1] Clark J I, Rhind D W. Population data and global environmental change[R]. Paris, IISC/UNESCO,1992.

[2] 杨小唤, 江东, 王乃斌, 等.人口数据空间化的处理方法[J]. 地理学报, 2002, 57(增刊): 70-75.

[3] Robinson J M. Restoring continuity: Exploration of techniques for reconstructing the spatial distribution underlying polygonized data[J]. Geographical Information Science, 1997(11): 633-648.

[4] 江东. 人文要素空间化研究进展[J]. 甘肃科学学报, 2007, 19(2): 91-94.

[5] 刘红辉, 江东, 杨小唤, 等. 基于遥感的全国GDP 1km格网的空间化表达[J]. 地球信息科学,2005, 7(2): 120-123.

[6] 易玲, 熊利亚, 杨小唤. 基于GIS技术的GDP空间化处理方法[J]. 甘肃科学学报, 2006, 18(2): 54-58.

[7] 黄莺, 包安明, 陈曦, 等. 新疆天山北坡干旱区GDP时空模拟[J]. 地理科学进展, 2009, 28(4): 494-502.

[8] 黄莺, 包安明, 陈曦, 等. 基于绿洲土地利用的区域GDP公里格网化研究[J]. 冰川冻土, 2009, 31(1): 158-164.

[9] Elvidge C D, Baugh K E, Kihn E A, et al. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption[J]. International Journal of Remote Sensing, 1997, 18(6): 1373-1379.

[10] Elvidge C D, Imhoff M L, Baugh K E, et al. Night-time lights of the world:1994-1995[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2001, 56(2): 81-99.

[11] Ghosh T, Sutton P, Powell R, et al.Estimation of Mexico's informal economy and remittances using nighttime lights data[C]. Urban Remote Sensing Event, 2009 Joint. Shanghai:IEEE, 2009:1-10: 418-444

[12] Ghosh T, Powell R, Elvidge C D, et al. Shedding light on the global distribution of economic activity[J]. The Open Geography Journal, 2010(3): 148-161 (In Press).

[13] Elvidge C D, Baugh K E, Kihn E A, et al. Mapping city lights with nighttime data from the DMSP operational linescan system[J]. Photogrammetric Engineering and Remote Sensing, 1997, LB(6): 727-734.

[14] 国家统计局国民经济综合统计司. 中国区域经济统计年鉴2006[M]. 北京: 中国统计出版社, 2006.

[15] 国家统计局城市社会经济调查司. 中国城市统计年鉴2006[M], 北京: 中国统计出版社, 2006.

[16] 黄耀欢, 杨小唤, 刘业森. 人口区划及其在人口空间化中的GIS分析应用[J]. 地球信息科学, 2007, 9(2): 49-54.

[17] 陈晋, 卓莉, 史培军, 等. 基于DMSP/OLS数据的中国城市化过程研究[J]. 遥感学报, 2003, 7 (3): 168-176.

[18] 卓莉, 史培军, 陈晋, 等. 20世纪90年代中国城市时空变化特征——基于灯光指数CNLI方法的探讨[J]. 地理学报, 2003, 58(6): 893-902.
文章导航

/