遥感技术与应用

土壤有机质含量估测及其影响因素的光谱分析

展开
  • 1. 中国科学院地理科学与资源研究所 资源环境与信息系统国家重点实验室, 北京 100101;
    2. 华东师范大学地理信息科学教育部重点实验室, 上海 200062;
    3. 中国科学院南京土壤研究所, 南京 210008;
    4. 江苏省扬州市土壤肥料站, 扬州 225101
胡文生(1973),女,博士。主要研究方向为资源环境与遥感应用。Email: huwsh@lreis.ac.cn

收稿日期: 2012-04-24

  修回日期: 2012-04-24

  网络出版日期: 2012-04-24

基金资助

地理信息科学教育部重点实验室开放研究基金资助项目(KLGIS2011A13)和国家自然科学基金项目(41001279)。

Effects on Application of Spectroscopy in Estimating of Soil Organic Matter Content

Expand
  • 1. State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200062, China;
    3. Institute of Soil Science, CAS, Nanjing 210008, China;
    4. Yangzhou Soil and Fertilizer Extension Service Center, Yangzhou 225101, China

Received date: 2012-04-24

  Revised date: 2012-04-24

  Online published: 2012-04-24

摘要

土壤颗粒大小差异使土壤反射光谱产生相应变化,影响土壤有机质含量等属性的光谱预测精度。本研究准备了颗粒粒径分别为2、0.25和0.15mm的土样,测定土壤有机质(Soil Organic Matter,SOM)含量,并于室内模拟条件下测定其反射光谱。通过分析不同粒径土样的原始(Raw)、多次散射校正(Multiple scattering correction, Msc)、一阶微分(First derivative, Fd)、连续统去除(Continuum removal, Cr)光谱与SOM含量之间的关系,筛选出与SOM含量相关性最强的Fd光谱单波段(2250nm, r=0.82, P<0.01),并建立线性回归模型;利用全波段光谱反射率,以偏最小二乘回归(Partial least square regression, PLSR)方法,确立2mm土样Msc处理光谱的PLSR模型为最优模型(RPD=3.56、R2=0.90、RMSEP=1.96g/kg)。土壤颗粒粒径对土壤光谱反射率变化有明显影响,但二者之间并非简单的线性关系,可能存在一个转折点;单变量(单波段光谱反射率)线性回归模型的预测能力,明显低于全波段反射光谱(Msc处理)-PLSR模型;土样样本容量对SOM含量预测精度有显著影响。因此,根据样本容量大小,选择合适的土壤颗粒粒径与光谱预处理方法组合可以提高预测精度。

本文引用格式

胡文生, 任红艳* , 庄大方, 史学正, 刘绍贵, 黄耀欢, 于信芳 . 土壤有机质含量估测及其影响因素的光谱分析[J]. 地球信息科学学报, 2012 , 14(2) : 258 -264 . DOI: 10.3724/SP.J.1047.2012.00258

Abstract

Reflectance spectra of soil responds to the differences of soil particle sizes, which affects directly the capability of predicting soil organic matter (SOM) content by spectral reflectance. With soil samples of different particle sizes at 2mm, 0.25mm and 0.15mm, reflectance spectra was collected under the condition of simulated sunshine in the laboratory and SOM contents were acquired. Multiple scattering correction (Msc), first derivative (Fd) and continuum removal (Cr) were used as data pretreatment methods to raise the Signal-to-Noise of raw spectra (Raw) before analyzing the correlation between spectral reflectance and SOM contents. Single waveband at 2250nm is selected from Fd-treated reflectance spectra because of its maximal linear correlation coefficient (r=0.82, P<0.01) responding to SOM contents, and then a linear regression is built with a moderate precision (R2=0.69). Furthermore, partial least square (PLS) was adopted to extract several principal components (PC) of full wavelength from 350 to 2500nm and to build prediction models. Only PLSR model of Msc-treated reflectance spectra of soil samples at 2mm particle size yielded better prediction for SOM content (RPD=3.56, R2=0.90, RMSEP=1.96g/kg). It indicates that particle size of soil sample poses obvious effects on soil reflectance spectra. There is a conceivable turning point of particle size because the correlation between particle size and reflectance is not simple linear relation. Capability of predicting SOM content by univariate linear regression model is markedly lower than that of PLSR model. In addition, prediction precision is significantly affected by capacity of soil samples. Hence, satisfying prediction precision of SOM content can be acquired by effective combination of moderate particle size (2mm) and proper spectral pretreatment (Msc).

参考文献

[1] Shi X Z, Yang R W, Weindorf D C, et al. Simulation of organic carbon dynamics at regional scale for paddy soils in China[J]. Climatic Change, (doi:10.1007/s10584-009-9704-1)2009.
[2] 任红艳, 庄大方, 邱冬生,等. 矿区农田土壤砷污染的可见-近红外反射光谱分析研究[J]. 光谱学与光谱分析, 2009, 29 (1): 114-118.
[3] Ben-dor E, Banin A. Near- infrared analysis as a rapid method to simultaneously evaluate several soil properties[J]. Soil Science Society of America Journal, 1995, 59: 364-372.
[4] 王润生. 高光谱遥感的物质组分和物质成分反演的应用分析[J]. 地球信息科学学报, 2009, 11 (3):261-267.
[5] Wu Y Z, Chen J, Ji J F, et al. A mechanism study of reflectance spectroscopy for investigating heavy metals in soils[J]. Soil Science Society American Journal, 2007, 71: 918-926.
[6] Irons J R, Campbell G S, Noman J M, et al. Predicition and measurement of soil bidirection reflectance[J]. IEEE Transcactions on Geoscience and Remote Sensing, 1992, 30: 249-260.
[7] Jacquemoud S, Baret F, Hanocq J F. Modelling spectral and bidirectional soil reflectance[J]. Remote Sensing of Environment, 1992, 41: 123-132.
[8] Cierneiewski J, Karnieli A. Virtural surfaces simulating the bidirectional reflectance of semiarid soils[J]. International Journal of Remote Sensing, 2003, 24(7), 1469-1486.
[9] Bänninger D, Flühler H. Modelling light scattering at soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7), 1462-1471.
[10] Ca asveras J C, Barrón V, Campillo M C, et al. Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy[J]. Geoderma. doi:10.1016/j.geoderma,2009.
[11] Nduwamungu C, Ziadi N, Tremblay G,et al. Near-infrared reflectance spectroscopy prediction of soil properties: effects of sample cups and preparation[J]. Soil Science Society American Journal, 2009, 73(6):1896-1903.
[12] 徐永明, 蔺启忠, 黄秀华,等. 利用可见光/近红外反射光谱估算土壤总氮含量的试验研究[J]. 地理与地理信息科学, 2005, 21(1), 19-22.
[13] 何挺, 王静,林宗坚,等. 土壤有机质光谱特征研究[J]. 武汉大学学报-信息科学版, 2006, 31(11),975-979.
[14] 扶卿华, 倪绍祥, 王世新,等. 土壤盐分含量的遥感反演研究[J]. 农业工程学报, 2007, 23(1), 48-54.
[15] 刘焕军, 张柏, 赵军等. 黑土有机质含量高光谱模型研究[J]. 土壤学报, 2007, 44(1), 27-33.
[16] Summers D, Lewis M, Ostendorf B, et al. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties[J]. Ecological Indicators, doi: 10.1016/j.ecolind,2009.
[17] Martin M Z, Labbe N, Andre N, et al. Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy[J]. Soil Science Scociety American Journal, 2010, 74(1), 87-93.
[18] Savvides A, Corstanje R, Baxter S J, et al. The relationship between diffuse spectral reflectance of the soil and its cation exchange capacity is scale-dependent[J]. Geoderma, 2010, 154, 353-358.
[19] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
文章导航

/