遥感技术与应用

多进制小波变换的图像分辨率定量降低方法

展开
  • 1. 南京师范大学虚拟地理环境教育部重点实验室,南京 210046;
    2. 唐山师范学院资源管理系,唐山 063000
张亚南(1986-)女,山东邹城人,博士研究生,主要研究方向为GIS数据安全。E-mail:yanandixin@126.com

收稿日期: 2011-11-14

  修回日期: 2012-05-04

  网络出版日期: 2012-06-25

基金资助

国家高新技术研究发展计划"863"计划资助项目(2012AA12A305)。

A Method to Quantitively Reduce Image Resolution Based on Multi-band Wavelet Transform

Expand
  • 1. Key Laboratory of Virtual Geographical Environment, Ministry of Education, Nanjing Normal University, Nanjing 210046, China;
    2. Department of Resource Management, Tangshan Teachers College; Tangshan 063000, China

Received date: 2011-11-14

  Revised date: 2012-05-04

  Online published: 2012-06-25

摘要

传统的图像分辨率降低主要是通过图像重采样实现的。多进制小波是近年来发展的小波分析理论的一个新的分支,它在正交性、紧支性、光滑性方面都优于二进制小波。本文首先介绍图像分辨率定量降低的需求与传统的图像分辨率降低方法;然后,以多进制小波的时频多分辨率特性,把多进制小波变换应用于定量降低图像分辨率,并用三进制小波变换进行了图像分辨率降低实验,提取三进制小波的低频分量作为降低分辨率后的图像;最后,通过与常用的图像重采样方法,如最临近法、双线性插值法及其衍生的邻域平均法的结果进行定性与定量评价,结果表明多进制小波在图像分辨率定量降低方面具有明显的优势。

本文引用格式

张亚南, 朱长青, 杜福光 . 多进制小波变换的图像分辨率定量降低方法[J]. 地球信息科学学报, 2012 , 14(3) : 352 -357 . DOI: 10.3724/SP.J.1047.2012.00352

Abstract

The achievement of traditional image resolution reduction is primarily through image resampling. Multi-band wavelet is a newly developed branch of wavelet analysis, and its orthogonality, compact support and smoothness are better than the binary wavelet. In this paper we firstly described the demand of quantitative reduction of image resolution and the traditional methods on image resolution reduction. Then we used multi-band wavelet to reduce image resolution quantitatively based on multi-resolution time frequency characteristics. We did the image resolution reduction experiment through the 3-band wavelet transformation and extracted the low-frequency information of the 3-band wavelet as the resulting image that achieved the image resolution reduction. Lastly, compared with the results of common image re-sampling methods, such as the nearest method, bilinear interpolation method and derivative neighborhood averaging method qualitatively and quantitatively, we found that multi-band wavelet has obvious advantages in image resolution reduction.

参考文献

[1] 明东萍,王群,杨建宁.遥感影像空间尺度特征与最佳空间分辨率选择[J].遥感学报,2008,12(4):529-537.

[2] Chen J, Deng M, Xiao P F. Optimal spatial scale choosing for high resolution imagery based on texture frequency analysis[J]. Journal of Remote Sensing,2011,15(3):492-501.

[3] 柏延臣,王劲峰.遥感信息的不确定性研究分类与尺度效应模型[M].北京:地质出版社,2003.

[4] 李永忠.基于小波变换的多分辨率图像转换[J].江苏科技大学学报(自然科学版),2005,19(6):50-53.

[5] 杨晓梅,朱长青.多进制小波变换及其在影像分析中的应用[J].中国图象图形学报,1999,4(2):157-160.

[6] 马蔼乃.遥感概论[M].北京:科学出版社,1984,153-156.

[7] 季统凯,赵忠明.海啸地区遥感图像空间分辨率定量评价研究[J].遥感学报:2005,9(4):486-493.

[8] 朱长青.小波分析理论与影像分析[M].北京:测绘出版社,1998.

[9] 朱长青,史文中.空间分析建模与原理[M].北京:科学出版社,2006.

[10] 毕宁.多进制小波在图像处理中的应用 .中山大学论文,2004.

[11] 李小春,陈鲸.多进制小波变换的快速构造及在遥感图像融合中的实现[J].计算机工程与应用,2004(7):32-34,114.

[12] 闫利,岳昔娟,崔晨风.一种定量确定遥感融合图像空间分辨率的方法[J]. 武汉大学学报(信息科学版),2007,32(8):667-670.

文章导航

/