遥感技术与应用

克里格法的土壤水分遥感尺度转换

展开
  • 1. 华南农业大学信息学院, 广州 510642;
    2. 中国科学院大学, 北京 100049;
    3. 中国科学院广州地球化学研究所, 广州 510642
王璐(1976-),女,在读博士,讲师,主要从事遥感与地理信息系统应用研究。E-mail:selinapple@163.com

收稿日期: 2012-06-14

  修回日期: 2012-07-10

  网络出版日期: 2012-08-22

基金资助

null

Remote Sensing Scale Transformation of Soil Moisture Based on Block Kriging

Expand
  • 1. College of Informatics, South China Agricultural University, Guangzhou 510642, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Guangzhou Institute of Geochemistry, CAS, Guangzhou 510642, China

Received date: 2012-06-14

  Revised date: 2012-07-10

  Online published: 2012-08-22

Supported by

null

摘要

尺度效应往往会制约着定量遥感反演的精度,对地学信息进行空间尺度转换是生产实践的必然要求,而常用的尺度转换模型多利用光谱数据进行差值计算,不适合升尺度和降尺度转换。由于土壤含水量数据具有区域变化量的随机性和结构性特点,本文以15m分辨率的ASTER图像像元为基本单元,采用点克里格法完成ASTER 15m至7.5m分辨率的土壤含水量数据降尺度转换,从分维数的相似程度上来看,转换结果是合理的;并利用块状克里格法对地面实测样点数据进行点到7.5m分辨率的面数据升尺度转换,将升尺度和降尺度转换结果与实测样点均值相比较,结果表明:7.5m分辨率的实测样点土壤水均值误差在1.5782-5.019之间,块状克里格法获取的升尺度土壤含水量数据与点克里格法获取的降尺度土壤含水量数据之间误差则为1.2825-5.0481,可见克里格法考虑了点与周边的关系,所获得的土壤含水量值要优于未考虑空间异质性的土壤含水量平均值。

本文引用格式

王璐, 胡月明, 赵英时, 刘振华* . 克里格法的土壤水分遥感尺度转换[J]. 地球信息科学学报, 2012 , 14(4) : 465 -473 . DOI: 10.3724/SP.J.1047.2012.00465

Abstract

The reasonable remote sensing sale transformation method is very important for RS data utilization. In order to find a suitable scaling model for ascending scale and downscaling transformation with spectral data, given the randomness and structural of soil moisture data as regional variation, point Kriging method accounting for spatial heterogeneity is used in this study to transfer from ASTER soil moisture data with 15m resolution to 7.5m resolution. The similarity degree of fractal dimension is shown that the transformation result is reasonable. Block Kriging method is engaged in the upscaling transformation for the field measured point soil content to 7.5m spatial resolution. The 7.5m resolution upscaling scale conversion results and average of measured sample point soil moisture with downscaling 7.5 m resolution remote sensing data were compared respectively. The result shows that 7.5m resolution soil moisture mean error of the measured sample points is in the range of 1.5782 to 5.019, the error between 7.5m resolution upscaling scale conversion results and downscaling 7.5 m resolution remote sensing data is from 1.2825 to 5.0481, which indicates that soil moisture value acquired by Kriging is much better than the soil moisture average without considering spatial heterogeneity under the same scale because of Kriging method taking account of the relationship between the points and the surrounding.

参考文献

[1] 杨胜天,刘昌明. 黄河流域土壤水分遥感计算及水循环过程分析[J].中国科学E辑:技术科学,2004,34(增刊I):1-12.

[2] 彭晓鹃,邓孺孺,刘小平. 遥感尺度转换研究进展[J].地理与地理信息科学,2004,20(5):6-10.

[3] Marceau D J. The scale issue in social and natural sciences[J]. Canadian Journal of Remote Sensing, 1999,25(4):347-356.

[4] 刘明亮,唐先明,刘纪远,等. 基于1km格网的空间数据尺度效应研究[J].遥感学报,2001,5(3):183-190.

[5] Bloschl G, Sivapalan M. Scale issues in hydrological modelling: a review[J]. Hydrological Processes, 1995,9(3-4):251-290.

[6] Lam N S N, Quattrochi D A. On the Issues of Scale, Resolution, and Fractal Analysis in the Mapping Sciences[J]. The Professional Geographer, 1992,44(1):88-98.

[7] Goodchild M F, Quattrochi D A. Scale, multiscaling, remote sensing, and GIS. Boca Rotan:Lewis Publishers, 1997.

[8] 吴骅,姜小光,习晓环,等. 两种普适性尺度转换方法比较与分析研究[J].遥感学报, 2009,13(2):183-189.

[9] Burnett C, Blaschke T. A multi-scale segmentation/object relationship modelling methodology for landscape analysis[J]. Ecological Modelling, 2003, 168(3): 233-249.

[10] Li C T, Chiao R. Unsupervised texture segmentation using multiresolution hybrid genetic algorithm. Proceedings of 2003 International Conference on Image Processing,2003.

[11] Fernandes R A, Miller J R, Chen J M, et al. Evaluating image-based estimates of leaf area index in boreal conifer stands over a range of scales using high-resolution CASI imagery[J]. Remote Sensing of Environment,2004,89(2):200-216.

[12] 王晅,肖斌,马建峰. 基于Radon和解析Fourier-Mellin变换的尺度与旋转不变目标识别算法[J]. 中国图象图形学报,2008,13(11): 2157-2162.

[13] Hay G J, Niernann K O, Goodenough D G. Spatial thresholds, image-objects, and upscaling: a multiscale evaluation[J]. Remote Sensing of Environment,1997, 62(1):1-19.

[14] 胡国彪,傅扬镳,胡小保. 基于变异函数套合的遥感图像尺度效应研究[J].科技风,2011(4):34-35.

[15] 冉有华,李新. 基于块克里金的土壤水分点观测向像元尺度的尺度上推研究[J].冰川冻土,2009,31(2):275-283.

[16] Liu Z, Zhao Y. Research on the method for retrieving soil moisture using thermal inertia model[J]. Science in China Series D: Earth Sciences, 2006,49(5):539-545.

[17] Journel A G, Huijbregts C J. Mining geostatistics[M]. Waltham, MA, USA: Academic Press, 1978.

[18] Matheron G. Principles of geostatistics[J]. Economic Geology, 1963,58(8):1246-1266.

[19] Krummel J R, Gardner R H, Sugihara G, et al. Landscape patterns in a disturbed environment[J]. Oikos, 1987,48(3):321-324.

文章导航

/