遥感技术与应用

北京市热岛效应时空变化的HJ-1B监测分析

展开
  • 1. 中国科学院遥感应用研究所, 北京 100101;
    2. 中国科学院大学, 北京 100049
薛晓娟(1987-),女,山西朔州人,硕士研究生,从事定量遥感研究。E-mail:xxj.0923@163.com

收稿日期: 2012-05-14

  修回日期: 2012-06-25

  网络出版日期: 2012-08-22

基金资助

国家自然科学基金项目(40971227);科技部国际科技合作与交流专项项目(2010DFA21880)和广东省省院产学研合作基金(2011B090300090)资助。

Monitoring Spatio-Temporal Changes of Heat Island Effect in Beijing Based on HJ-1B

Expand
  • 1. Institute of Remote Sensing Applications, CAS, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2012-05-14

  Revised date: 2012-06-25

  Online published: 2012-08-22

摘要

本文利用2008-2011年HJ-1B/CCD可见光-近红外数据,以及HJ-1B/IRS热红外数据,采用遥感算法反演北京市地表温度,并用MODIS地表温度产品对反演结果进行了初步验证。同时分析了北京市热岛效应的年际、年内变化趋势。另利用热场变异指数分析其空间分布特征,以及NDVI、NDBI与城市下垫面对热岛效应的影响。结果表明:(1)2008-2010年北京市热岛强度总体呈上升趋势,2011年有所缓解,4年热岛强度分别为:5.2℃、5.2℃、9.2℃、8.2℃;(2)北京市2010年四季存在明显热岛现象,夏季最强,春、秋次之,冬季最弱,四季热岛强度分别为8.2℃、9.4℃、9.2℃、4.3℃;(3)2008-2011年北京市热岛空间分布特征表明,房山区和大兴区的南部热岛效应逐年缓解,2011年昌平区热岛效应比前3年明显,植被和水体形成城市冷岛;(4)地表温度与NDVI呈明显负相关,与NDBI呈正相关,城市热岛效应与下垫面类型存在明显相关性。

本文引用格式

薛晓娟, 孟庆岩*, 王春梅, 郑利娟, 王靓, 张瀛 . 北京市热岛效应时空变化的HJ-1B监测分析[J]. 地球信息科学学报, 2012 , 14(4) : 474 -480 . DOI: 10.3724/SP.J.1047.2012.00474

Abstract

The change of land surface temperature(LST)can reveal the heat environment of city,which leads to urban heat island (UHI). As a metropolis, Beijing has a serious urban heat island effect, so, analyzing and studying spatial and temporal changes of Beijing's urban heat island has a great significance. In this paper, we referenced image-based method to retrieve the land surface temperature using Environment Satellite image (HJ-1B) CCD/IRS as the main data source from 2008 to 2011, made preliminary validation on retrieval result using MODIS temperature products, then analyzed the annual and inter annual changes of urban heat island effect in Beijing. Further, we used thermal field variability index to make quantitative analyze of UHI. Finally, we analyzed the relationship among NDVI, NDBI and land use types. The results show that: (1) between 2008 and 2011, there is a significant heat island effect in Beijing. The heat island expanded from 2008 to 2010 but eased in 2011, the UHI were 5.2℃, 5.2℃, 9.2℃ and 8.2℃, respectively; (2) There is a significant heat island effect in four seasons of Beijing in 2010, the heat island in summer is the strongest, followed by spring and autumn, winter is the weakest, and the UHI were 8.2℃, 9.4℃, 9.2℃ and 4.3℃, respectively; (3) The quantitative distribution of UHI in Beijing from 2008 to 2011 showed that the UHI is mainly in urban, the heat island effect in the Southern of Fangshan District and Daxing District reduced year by year, the heat island effect of Changping District in 2011 is higher than in the previous three years, and vegetation and water formed urban cool island; (4) LST and NDVI are negatively correlated. LST and NDBI are positively correlated obviously, NDVI and NDBI have a significant impact on urban heat island, and urban heat island has a clear correction with land use types. So, increasing the city green area and water area can effectively slow down the heat island effect.

参考文献

[1] 肖荣波,欧阳志云,李玮峰,等. 城市热岛的生态环境效应[J].生态学报,2005,25(8):2055-2060.

[2] Howard L. Climate of London deduced from meteorological observation[J]. Harvey and Darton, 1833,1(3):1-24.

[3] Rao P K. Remote sensing of urban heat islands from an environment satellite [J]. Bullentin of the American Meteorological Society, 1972(53):647-648.

[4] Duckworth F A, Sandberg J S. The effect of cities upon horizontal and vertical temperature gradients[J]. the American Meteorological Society, 1954(35):198-207.

[5] Streuker D R. A remote sensing study of the urban heat island of Huston,Texas[J]. International Journal of Remote Sensing, 2002(23):2595-2608.

[6] 戴昌达,唐伶俐,陈刚,等. 卫星遥感监测城市扩展与环境变化的研究[J]. 环境遥感,1995,10(1):1-8.

[7] Weng Q H, Lu D S, Schubring J. Estimation of land surface temperature vegetation abundance relationship for urban heat island studies[J]. Remote Sensing of Environment, 2004,89(4):467-483.

[8] 覃志豪,李文娟,徐斌,等. 陆地卫星TM6波段范围内地表比辐射率的估计[J]. 国土资源遥感,2004,3(61):28-32.

[9] 曾永年,张少佳,张鸿辉,等. 城市群热岛时空特征与地表生物物理参数的关系研究[J].遥感技术与应用,2010,25(1):1-7.

[10] 段金龙,宋轩,张学雷. 基于RS的郑州市城市热岛效应时空演变[J].应用生态学报,2011,22(1):165-170.

[11] 陈松林,王天星.等间距法和均值-标准差法界定城市热岛的对比研究[J]. 地球信息科学学报,2009,11(2):145-149.

[12] http://baike.baidu.com/view/2621.htm

[13] 闫峰,覃志豪,李茂松,等.基于MODIS数据的上海市热岛效应研究[J].武汉大学学报·信息科学版,2007,32(7):576-580.

[14] Artis D A, Carnahan W H. Survey of emissivity variability in thermography of urban areas[J]. Remote Sensing of Environment, 1982, 12:313-329.

[15] 丁凤,徐涵秋. 基于Landsat TM的3种地表温度反演算法比较分析[J].福建师范大学学报, 2008,24(1):91-96.

[16] 赵少华,秦其明,张峰,等. 基于环境减灾小卫星(HJ-1B)的地表温度单窗反演研究[J].光谱学与光谱分析, 2011,31(6):1552-1556.

[17] XING Qian(幸倩)..http://news. 163.com/10/0708/10/6B2GV5RG000146BD.html.2010-07-08/2012-0407

[18] 罗小波,陈丹,刘明皓,等. 基于HJ-1B/IRS的重庆市热岛效应监测应用[J].地球信息科学学报, 2011,13(6):833-839.

[19] 赵英时,李小文,陈冬梅,等.遥感应用分析原理与方法[M].北京:科学出版社,2003.

[20] 方永侠,申双和,韩莹,等.基于TM影像的不同季节北京城市热环境研究[J].气候与环境研究, 2011, 16(4):487-493.

[21] 王喜全,王自发,郭虎.北京"城市热岛"效应现状及特征[J]. 气候与环境研究, 2006, 11(5): 627-636.

文章导航

/