遥感技术与应用

城市尺度组分温度的ASTER数据遥感反演

展开
  • 1. 中南大学地球科学与信息物理学院,中南大学空间信息技术与可持续发展研究中心,长沙 410083;
    2. 衡阳师范学院资源环境与旅游管理系,衡阳 421008
郑文武(1978-),男,博士研究生。主要从事GIS和遥感应用研究。E-mail: zhwenwu@163.com

收稿日期: 2011-12-12

  修回日期: 2012-08-22

  网络出版日期: 2012-10-25

基金资助

国家自然科学基金项目(41171326,40771198);湖南省自然科学基金项目(08JJ6023,09JJ4021)资助。

Land Surface Component Temperature Retrieval for Urban Scale Based on ASTER Image

Expand
  • 1. School of Geoscience and Info-Physics, Central South University, Spatial Information Technology and Sustainable Development Research Center of Central South University, Changsha 410083, China;
    2. School of Resource Environment and Tourism Management, Hengyang Normal University, Hengyang 421008, China

Received date: 2011-12-12

  Revised date: 2012-08-22

  Online published: 2012-10-25

摘要

为了获取城市尺度组分温度,实现城市水热平衡的高精度反演,探索了一种多波段热红外遥感影像的城市尺度组分温度反演算法。算法选取了植被、土壤和不透水表面等3种组分,并且针对ASTER数据,利用线性混合像元分解方法获取像元平均比辐射率,以MODIS近红外数据估算大气水汽含量和大气透过率,采用牛顿迭代法获取大气平均温度,并用最小二乘原理获取地表组分温度。最后,应用长沙市区的实验影像进行了实验研究,通过纯净像元上组分温度反演结果与分裂窗算法反演结果的对比分析,以及组分温度反演结果与实测数据的对比分析,对算法的精度进行了验证,结果表明:(1)纯净像元上,组分温度反演结果与分裂窗算法反演结果具有较好的相关性,植被组分相关性最高,达0.9796,2种结果平均绝对偏差值为0.36℃;(2)组分温度反演结果与实测组分温度绝对偏差范围为0.2~1.4℃,植被组分温度与实测值偏差相对较小,不透水表面组分温度与实测值偏差相对最大。

本文引用格式

郑文武, 曾永年* . 城市尺度组分温度的ASTER数据遥感反演[J]. 地球信息科学学报, 2012 , 14(5) : 658 -665 . DOI: 10.3724/SP.J.1047.2012.00658

Abstract

Land surface component temperature has more significant physical meaning, and it reflects the actual distribution of temperature more significantly. Meanwhile, its retrieval algorithms have no need for hypothesis that components in pixels have the same temperature. Although the multi-angle retrieval algorithm of component temperature has become mature gradually, its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data. Therefore, based on the existing multi-band remote sensing data, access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing. In this paper, a new algorithm to retrieve land surface component temperature for urban area had been proposed. It took advantage of ASTER data, and evaluated mean emissivity of pixels based on linear spectral unmixing, retrieved atmospheric water vapor content from MODIS NIR bands, and used Newton's iterative method to obtain atmosphere average temperature. Finally, an experimental study of this algorithm had been conducted and the retrieval result had been validated using some measured data. The results showed that: (1) the results of component temperature retrieval algorithm and split window algorithm of pure pixels have high correlation coefficient and the correlation coefficient of vegetation is the highest; (2) compared with the measured data, biases of the retrieval result ranged between 0.2 and 1.4℃, and the vegetation component temperature among different components had the smallest bias value.

参考文献

[1] Heiple S, Sailor D J. Using building energy simulation and geospatial modelling techniques to determine high-resolution building sector energy consumption profiles[J]. Energy and Buildings 2008,40:1426-1436.

[2] Myrup L D. A numerical model of the urban heat island[J]. Journal of Applied Meteorology, 1969,16:11-20.

[3] Yuan F, Bauer M E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery[J]. Remote Sensing of Environment, 2007,106:375-386.

[4] Grimmond C S B, Oke T R. Turbulent heat fluxes in urban areas: Observations and a Local-scale Urban Meteorological Parameterization Scheme (LUMPS)[J]. Journal of Applied Meteorology, 2002,41:792-810.

[5] Qin Z, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 2001,22:3719-3746.

[6] Sobrino J A, Jiménez-Muñoz J C, Paolini L. Land surface temperature retrieval from LANDSAT TM 5[J]. Remote Sensing of Environment, 2004,90(4):434-440.

[7] Wang K C, Liang S L. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites[J]. Remote Sensing of Environment, 2009,113(7):1556-1565.

[8] Pinheiro A C T, Mahoney R, Privette J L, Tucker C J. Development of a daily long term record of NOAA-14 AVHRR land surface temperature over Africa[J]. Remote Sensing of Environment, 2006, 103(2):153-164.

[9] 范闻捷,徐希孺. 路面组分温度的综合反演研究[J]. 中国科学(D辑),2005,35(10):989-996.

[10] 王奋勤,范闻捷,秦其明,等. 矩阵表达与对象统计特性相结合的组分温度反演方法[J]. 遥感学报,2004,8(2):102-106.

[11] 宋小宁,赵英时. 基于MODIS数据的组分温度反演研究[J].中国矿业大学学报,2004, 33(44):406-411.

[12] Mao K B, Shi J C, Li Z L. An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data[J]. Journal of Geophysical Research, 2007, 112(21): 1029-1045.

[13] 历华,曾永年,贠培东,等. 利用多源遥感数据反演城市地表温度[J].遥感学报,2007,11(6):891-897.

[14] 郑文武,曾永年,田亚平. 基于混合像元分解模型的TM6/ETM+热红外波段地表比辐射率估算[J]. 地理与地理信息科学,2010,26(3):25-28.

[15] Kaufman Y J, Gao B C. Remote Sensing of Water Vapor in the Near IR from EOS/MODIS[J].IEEE Transaction on Geosciences and Remote Sensing, 1992, 30(5): 871-884.

[16] Li J, Zhou F X, Zeng Q C. Simultaneous non-linear retrieval of atmospheric temperature and absorbing constituent profiles from satellite infrared sounder radiances[J]. Adv. Atmos. Sci., 1994, 11:128-138.

[17] 赵强,杨世植,乔延利,等. 利用MODIS红外资料反演大气参数以及表层温度的研究[J].武汉大学学报·信息科学版,2009,34(4):400-403.

[18] Qiang Zhao, Shizhi Yang, Yanli Qiao, etc. Study of simultaneous non-linear retrieval of atmospheric parameters and surface skin temperature from MODIS infrared data[J]. Geomatics and Information Science of Wuhan University,2009,34(4):400-403.

文章导航

/