本期要文(可全文下载)

基于F-DEM的洪水淹没区精确快速提取

展开
  • 1. 南京师范大学虚拟地理环境教育部重点实验室, 南京 210023;
    2. 滁州学院地理信息与旅游学院, 滁州 239012;
    3. 温州大学生命与环境科学学院, 温州 325027
江岭(1987-),男,安徽六安人,博士研究生,主要从事DEM数字地形分析及数字流域分析。E-mail:jiangling_xs@163.com

收稿日期: 2012-10-29

  修回日期: 2012-12-03

  网络出版日期: 2013-02-25

基金资助

国家自然科学基金项目(40930531);"资源与环境信息系统国家重点实验室"开放基金项目(2010KF0002SA);安徽高校省级自然科学研究重点项目(KJ2010A250);江苏省普通高校研究生科研创新计划(CXZZ12_0391);南京师范大学研究生优秀学位论文培育计划(2011BS0007)。

Fast and Accurate Data Extraction of Flood Submerged Area Based on F-DEM

Expand
  • 1. Key Laboratory of Virtual Geographical Environment, Ministry of Education, Nanjing Normal University, Nanjing 210023, China;
    2. Geographic Information and Tourism College, Chuzhou University, Chuzhou 239012, China;
    3. College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325027, China

Received date: 2012-10-29

  Revised date: 2012-12-03

  Online published: 2013-02-25

摘要

洪水淹没区包括洪水淹没的范围与深度,准确、高效地获取洪水淹没区是洪灾评估及减灾救灾的关键。本文针对现有洪水淹没范围与深度的快速计算及精度方面的不足,设计了洪水淹没区精确快速提取方法。首先,通过特征嵌入式DEM(F-DEM)数字地形建模技术,修正常规格网DEM对沟渠、坎堤等突变地形描述的失真问题;然后,基于洪水水位监测数据,采用Kriging内插模型构建洪水淹没面;最后,通过GIS多层面叠加及空间查询分析,获取真实淹没区信息。以温州水头镇水位监测点数据为基础,对其暴风潮后的洪水淹没区进行了分析,并利用大区域模拟水位监测点数据对提取方法效率作了测试。实验结果表明,该方法能较好地解决大区域海量数据条件下的淹没区提取问题。

关键词: DEM; F-DEM; 灾情评估; 淹没区

本文引用格式

江岭, 汤国安, 王春, 宋效东, 崔灵周 . 基于F-DEM的洪水淹没区精确快速提取[J]. 地球信息科学学报, 2013 , 15(1) : 68 -74 . DOI: 10.3724/SP.J.1047.2013.00068

Abstract

The basic attribute of flood submergence contains the inundated area and depth which are the core factors in flood disaster. The accurate and efficient obtaining of inundated area is critical for flood assessment and disaster relief. In recent years, forecasting and simulating the flood inundated area has been a hot topic in applied hydrology of GIS by using digital elevation model (DEM) data. However, it is always more difficult to get the inundated area and depth of flood submergence and normally needs more computing time to calculate the inundated area and depth since large study area and huge data. According to the disadvantage of existing method in computation speed and accuracy, a fast and accurate method for flood submerged area extraction is provided in this paper. Firstly, the distortion terrain when describing the discontinuous terrain such as ditch and dike by regular grid DEM is revised by taking the advantage of terrain features preserved grid digital elevation model (F-DEM). After corrected, flood submerged surface is created according to the Kriging interpolation model based on monitored points of flood. At last, combined with the basic principle of flood submerged extraction, the true area of flood submergence is obtained by using analysis techniques of overlay and topology spatial location in GIS. Based on the data of monitoring points in Shuitou Town, Wenzhou City, the flood inundated area is analyzed. And, the efficiency of the extraction method is tested by the monitoring points of simulation level in a large area. The experiment results show that:(1) The extraction method works well in the discontinuous terrain such as ditch, farmland and dike and the connectivity of submergence could be maintained effectively. (2) Calculating the connectivity of submerging is the most time-consuming part of the submerged area extraction. Compared with seed filling algorithm, the computational efficiency of the method in this paper rises by 90%. All in all, this extraction method has the ideal precision and efficiency which can better solve the inundated area extraction issue and provides scientific assessment for flood estimation and disaster relief.

参考文献

[1] Youssef A M, Pradhan B, Hassan A M. Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery[J]. Environmental Earth Sciences, 2011, 62(3):611-623.

[2] 刘仁义,刘南. 基于GIS复杂地形洪水淹没区计算方法[J]. 地理学报, 2001, 56(1):1-26.

[3] 葛小平,许有鹏,张琪,等. GIS支持下的洪水淹没范围模拟[J]. 水科学进展, 2002, 13(2):456-460.

[4] 丁志雄,李纪人,李琳. 基于GIS格网模型的洪水淹没分析方法[J]. 水利学报, 2006(6):56-59.

[5] 陈桂红,唐伶俐,戴昌达,等. 洪涝灾情快速反应的星载SAR与TM 数据的融合处理[J]. 地球信息科学学报, 2011,13(1):103-105.

[6] Chen J. A GIS-based model for urban flood inundation[J]. Journal of Hydrology, 2009, 373:184-192.

[7] Merwade V, Cook A, Coonrod J. GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping[J]. Environmental Modelling & Software, 2008, 23(10-11):1300-1311.

[8] Bates P D, De Roo A P J. A simple raster-based model for flood inundation simulation[J]. Journal of Hydrology, 2000, 236(1-2):54-77.

[9] Sanders B F. Evaluation of on-line DEMs for flood inundation modeling[J]. Advances in Water Resources, 2007, 30(8):1831-1843.

[10] Erpicum S, Dewals B J, Archambeau P. Detailed inundation modelling using high resolution DEMs[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 2(4):196-208.

[11] 孙海,王乘. 利用DEM的"环形"洪水淹没算法研究[J]. 武汉大学学报(信息科学版), 2009, 34(8):948-951.

[12] 郭利华,龙毅. 基于DEM的洪水淹没分析[J]. 测绘通报, 2002(11):25-27.

[13] Toth E, Brath A, Montanari A. Comparison of short-term rainfall prediction models for real-time flood forecasting[J]. Journal of Hydrology, 2000, 239(1-4):132-147.

[14] Dutta D, Herath S, Musiake K. A mathematical model for flood loss estimation[J]. Journal of Hydrology, 2003, 277(1-2): 24-49.

[15] 王春,汤国安,刘学军,等. 特征嵌入式数字高程模型研究[J]. 武汉大学学报(信息科学版), 2009, 34 (10):1149-1153.

[16] 宋敦江,岳天祥,杜正平. 等高线树构建及高保真DEM构建[J]. 中国图象图形学报, 2011, 16(7):1255-1261.

[17] 江岭,汤国安,李伟涛,等. 特征嵌入式DEM的地形要素快速格网分割算法[J]. 测绘通报, 2010(9):15-18.

[18] 陈鹏霄,申邵洪,谭德宝. 基于空间插值的洪水淹没空间分布快速获取[J]. 武汉大学学报(工学版), 2010, 43(6):727-729.

[19] Sun X, Mein R G, Keenan T D, et al. Flood estimation using radar and raingauge data[J]. Journal of Hydrology, 2000, 239(1-4):4-18.

[20] Chokmani K, Ouarda T. Physiographic space-based kriging for regional flood frequency estimation at ungauged sites[J]. Water Resources Research, 2004, 40:W12514.

[21] Borga M, Anagnostou E N, Frank E. On the use of real-time radar rainfall estimates for flood prediction in mountainous basins[J]. Journal of Geophysical Research, 2000, 105:2269-2280.

文章导航

/