遥感技术与应用

顾及地形坡度的非线性最小二乘相位解缠

展开
  • 1. 山东科技大学测绘科学与工程学院, 青岛 266510;
    2. 山东科技大学现代教育中心, 青岛 266510
刘伟科(1980-),男,山东临沂人,博士生,研究方向为SAR数据处理及遥感测量。E-mail:weike.liu@163.com

收稿日期: 2012-08-13

  修回日期: 2012-12-20

  网络出版日期: 2013-02-25

基金资助

国家自然科学基金项目(41274007,40874001);山东省自然科学基金项目(ZR2012DM001);山东科技大学科研创新团队支持计划项目(2011KYTD103)。

Nonlinear Least Squares Phase Unwrapping Based on Topographic Slopes

Expand
  • 1. Geomatics College, Shandong University of Science and Technology, Qingdao 266510, China;
    2. Modern Educational Center, Shandong University of Science and Technology, Qingdao 266510, China

Received date: 2012-08-13

  Revised date: 2012-12-20

  Online published: 2013-02-25

摘要

InSAR 相位解缠是利用干涉合成孔径雷达(InSAR)数据,提取数字高程模型,进行精确差分干涉测量的关键技术之一。然而缠绕的差分相位信息在地形陡峭或者坡度变化较大区域的解缠结果会有较大的误差传递的问题,针对此问题将干涉图中的地形坡度表示为距离向和方位向的局部相位频率,利用局部相位频率估计地形坡度和推导缠绕相位梯度概率密度函数(PG-PDF)参数模型,并将参数模型作为非线性最小二乘相位解缠模型约束条件,平滑不满足要求的缠绕相位梯度,经过迭代求解得到的解缠结果可以在消除噪声的同时减少地形因素的欠采样对相位解缠结果的影响,提高相位解缠的精度。最后,利用欧空局ENVISAT ASAR卫星获取的干涉数据进行实验,验证了算法在解缠精度和对地形的适应性方面优于直接加权的相位解缠算法,在频域下顾及地形的方法能有效克服LS对于相位坡度欠估计的缺点,具有较高的精度和稳定性,能够有效地考虑地形坡度的影响,抑制误差传递。

本文引用格式

刘伟科, 刘国林, 付政庆 . 顾及地形坡度的非线性最小二乘相位解缠[J]. 地球信息科学学报, 2013 , 15(1) : 137 -143 . DOI: 10.3724/SP.J.1047.2013.00137

Abstract

Interferometric synthetic aperture radar (InSAR) phase unwrapping is one of the key technologies, which, uses the InSAR interference phase, to extract digital elevation model or accurate differential interferometry. However, affected by the porblem that the terrain is streep or the slope is larger, the unwrapping result is bad and causes error transmission in the differential wrapped phase information. In view of this problem, this paper considered to express the terrain slope in the interferogram as the partial phase frequency in range and azimuth direction. Using partial phase frequency to estimate the terrain slope and derivate the wrapped phase gradient probability density function (PG-PDF), the parameter model was used as the constraints of the nonlinear least squares phase unwrapping algorithm, in order to smooth the un-requirements unwrapped phase gradient. After unwrapping, the iterative solution which obtained from the results could eliminate the noise while reducing topographical factors under the condition of less sampling, at the same time the phase unwrapping results improved the accuracy of phase unwrapping. Finally, in the experiments that used the interferometric data obtained from ESA ENVISAT ASAR, it is verified that taking into account the terrain in the frequency domain method could effectively overcome the shortcomings of LS estimates for the phase gradient owed, and the algorithm in unwrapping could effectively give consideration to terrain factors, suppress error propagation, and have precision and adaptability to the terrain slope better than a direct weighted phase unwrapping algorithm.

参考文献

[1] 刘国林,郝华东,闫满,等.顾及地形因素的InSAR卡尔曼滤波相位解缠算法[J].测绘学报,2011,40(3):283-288.

[2] 熊涛,陈亦伦,杨健,等.基于变相位技术的相位解缠方法[J].中国科学:信息科学,2010,40(3):445-457.

[3] Hubig M, Suchandt S, Adam N. A class of solution-invariant transformations of cost functions for minimum cost flow phase unwrapping[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2004,21(10):1975-1987.

[4] 靳国旺,徐国华,佘懋勋,等.基于瞬时频率估计的InSAR相位解缠方法[J].测绘科学与技术学报,2009,26(1):33-35.

[5] 刘国林,独知行,薛怀平,等.卡尔曼滤波在InSAR噪声消除与相位解缠中的应用[J].大地测量与地球动力学,2006,26(2): 66-70.

[6] 赵争,张继贤,张过.遗传算法在InSAR相位解缠中的应用[J].测绘科学,2002,27(3):37-39.

[7] 魏志强,金亚秋.基于蚁群算法的InSAR相位解缠算法[J].电子与信息学报,2008,30(3):50-55.

[8] Krämer R. Auf Kalman-Filtern basierende Phasen- und Parameter estimation zur Lösung der Phasenvieldeutigkeitsproblematik bei der Höhenmodellerstellung aus SAR-Interferogrammen [D]. Siegen, Germany: Universität- GH Siegen, 1989.

[9] 朱岱寅,朱兆达.利用线性相位模型提高干涉SAR相干性及改进相干性估计[J].电子学报,2005,33(9):1594-1598.

[10] 向茂生,李树楷.地形坡度对干涉相位残余点发布的影响[J].测绘学报,1999,28(2):139-143.

[11] 刘学军,卞路,卢华兴,等.顾及DEM误差自相关的坡度计算模型精度分析[J].测绘学报,2008,37(2):200-206.

[12] Guarnieri A M. SAR Interferometry and Statistical Topography[J]. IEEE Trans. Geosci. Remote Sens, 2002, 40(12):2567-2581.

[13] Stramaglia S, Refice A, Guerriero L. Statistical mechanics approach to the phase unwrapping problem [J]. Physica, 2000, A(276):521-534.

[14] Guarnieri A M. Using topography statistics to help phase unwrapping[J]. IEEE Proc.-Radar Sonar Navig, 2003,150(3):144-151.

[15] 吴江飞. 星载GPS卫星定轨中若干问题的研究. 北京:中国科学院研究生院,2006.

[16] Lee J S, Hoppel K W, Mango S A, et al. Intensity and phase statistics of multilook-polarimetric and interferometric SAR imagery[J]. IEEE Trans.Geosci. Remote Sens,1994(32):1017-1028.

[17] Ghiglia D C, Pritt M D. Two-dimensional phase unwrapping: Theory, algorithms and software[M]. John Wiley & Sons,1998.

[18] Gruber A, Huber M, Wessel B, et al. Accuracy assessment of first calibrated Tan DEM-X DEM [C]. IGARSS'11, 2011, 114-117.

[19] 刘国林,郝华东,陶秋香.卡尔曼滤波相位解缠及其与其他方法的对比分析[J].武汉大学学报·信息科学版,2010,35(10):1174-1178.

文章导航

/