气溶胶光学厚度作为描述气溶胶光学特性的重要参数之一, 被广泛应用于空气质量监测及辐射传输模型的大气订正等研究中。卫星遥感可快速反演获取大范围气溶胶信息, 但其产品通常因云覆盖或暗目标算法等原因而存在空间覆盖率较低的问题, 且产品时相受限于卫星过境时间。水平能见度作为描述气溶胶光学特性的另一重要参数, 由分布广泛的气象台站一日8 次固定时间多次发布。建立水平能见度与气溶胶光学厚度的转换关系, 可实现对卫星反演气溶胶光学厚度的有益补充。本文利用2001-2009 年的MODIS气溶胶光学厚度产品与中国华东地区71 个气象台站的水平能见度数据, 对描述两者转换关系的Peterson 模型进行区域优化。采用分区域高斯曲线拟合的方法, 对影响转换精度的主要参数气溶胶标高随时间变化规律开展研究和模拟。利用2010 年数据对优化模型进行精度及区域适用性验证。结果表明, 优化后模型的气溶胶光学厚度估算均方根误差为0.31, 低于原模型误差;精度基本上与单站点优化模型一致, 但在实用性方面优于单站点优化模型。
Aerosol optical depth (AOD) is one of the most important parameters in describing aerosol optical characteristics. It is widely used in researched on air quality monitoring and atmospheric correction based on radiative transfer model. A wide range of aerosol information can be fast obtained and retrieved using satellite remote sensing technology. While, satellite retrieved aerosol product has low spatial coverage because of the limitation of cloud coverage and dark target algorithm, and the time phase of the product is limited by satellite overpass time. Horizontal meteorological visibility (HMV) is another very important parameter in describing aerosol optical characteristics. It is observed 8 fixed times one day by widely distributed meteorological sites in China. It can be a good supplement of satellite retrieved aerosol optical depth data by building the convention relationship between aerosol optical depth data and horizontal meteorological visibility data. In this study, MODIS aerosol optical depth product from 2001 to 2009 and horizontal meteorological visibility data from 71 meteorological sites located in Eastern China were chosen as the research data. The research data was used to optimize Peterson model which describes the relationship between aerosol optical depth and horizontal meteorological visibility. Aerosol scale height is the main parameter that influences the conversion accuracy between aerosol optical depth and horizontal meteorological visibility. By regional Gaussian fitting method, the temporal trends of aerosol scale height were fitted. The aerosol optical depth data and horizontal meteorological visibility data in 2010 were used to validate the accuracy and the regional applicability of the optimized model. The result shows the RMSE of aerosol optical depth estimation of optimized model is 0.31, which is lower than that of Peterson model. Compared with the single site optimized model, the accuracy is similar, while the application of regional optimized model is better than the single site optimized model.
[1] Durkee P A, Pfeil F, Frost E, et al. Global analysis of aerosolparticle characteristics[J]. Atmospheric Environment,1991(25A):2457-2471.
[2] 章澄昌,周文贤.大气气溶胶教程[M].北京:气象出版社,1995.
[3] Ichoku C, Kaufman Y J, Remer L A, et al. Global aerosolremote sensing from MODIS[J]. Adv Space Res., 2004(34):820-827.
[4] Kaufman Y J, Tanre D, Gordon H R, et al. Passive remotesensing tropospheric aerosols and atmospheric correctionfor the aerosol effect[J]. Journal of Geophysical Research,1997,102(D14):16815-16830.
[5] 马张宝,李炳燮,齐清文,等.基于光谱特征分析的MODIS影像去云算法的研究[J].遥感信息,2009(4):3-8.
[6] 宋晓宇,刘良云,李存军,等.基于单景遥感影像的去云处理研究[J].光学技术,2006,32(2):299-303.
[7] Vermote E F, Tanre D, Deuze J L, et al. Second simulationof the satellite signal in the solar spectrum, 6S: an overview[J]. IEEE Trans. Geosci. Remote Sens., 1997,35(3):675-686.
[8] Berk A, Anderson G P, Acharya P K, et al. MODTRAN4version 3 revision 1 user’s manual [R]. Hanscom AirForce Base, MA: Air Force Research Lab, 2003.
[9] Elterman L. Relationships between vertical attenuation andsurface meteorological range[J]. Applied Optics, 1970,9(8):1804-1810.
[10] 何立明,王华,阎广建,等.气溶胶光学厚度与水平气象视距相互转换的经验公式及其应用[J].遥感学报,2003,7(5):372-378.
[11] 赵柏林,张芃菲,高国明.我国大气气溶胶光学厚度的特性[J].气象学报,1986,44(2):235-241.
[12] Koschmieder H. Theorie der horizontalen Sichtweite[J].Beiträge zur Physik der freien Atmosphäre, 1924(12):33-53,171-181.
[13] Peterson J T, Fee C J. Visibility-atmospheric turbidity dependenceat Raleigh, North Carolina [J]. Atmospheric Environment,1981,15(12):2561-2563.
[14] 朱忠敏,龚威,余娟,等.水平能见度与气溶胶光学厚度转换模型的适用性分析[J].武汉大学学报信息科学版,2010,35(9):1086-1090.
[15] 余娟,龚威,朱忠敏.高斯曲线优化能见度与气溶胶光学厚度转换模型[J].遥感学报,2011,15(5):1008-1023.
[16] 罗云峰,吕达仁,周秀骥,等.30年来我国大气气溶胶光学厚度平均分布特征分析[J].大气科学,2002,26(6):721-730.
[17] 郑小波,周成霞,罗宇翔,等.中国各省区近10 年遥感气溶胶光学厚度和变化[J]. 生态环境学报,2011,20(4):595-599.
[18] 毛节泰,李成才,张军华,等.MODIS 卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比[J].应用气象学报,2002(13):127-135.
[19] 王莉莉,辛金元,王跃思,等.CSHNET 观测网评估MODIS气溶胶产品在中国区域的适用性[J].科学通报,2007,52(4):477-486.
[20] 周春艳,柳钦火,唐勇,等.MODIS 气溶胶C004、C005 产品的对比分析及其在中国北方地区的适用性评价[J].遥感学报,2009,13(5):854-872.
[21] 潘先洁,陈俊,陈思炼,等.云和站能见度自动观测系统与人工观测的对比分析[J].现代农业科技,2012(9):23-30.
[22] 段玉森,束炯,张弛,等.上海市大气能见度指数指标体系的研究[J].中国环境科学,2005,25(4):460-464.
[23] Nann S, Riordan C. Solar spectral irradiance under clearand cloudy skies: Measurements and a semi-empiricalmodel[J]. Journal of Applied Meteorology, 1991,30(4):447-462.