地球信息科学理论与方法

基于改进logistic-CA的城市形态多情景模拟预测分析——以天津滨海地区为例

展开
  • 天津大学建筑学院,天津300072
黄焕春(1983-),男,河南开封人,博士生,主要从事人文地理与城乡规划研究。E-mail:huanghc295@163.com

收稿日期: 2013-01-07

  修回日期: 2013-03-19

  网络出版日期: 2013-06-17

基金资助

国家自然科学基金项目(1278330)

A Method of Simulation and Prediction of Urban Morphology under Multiscenarios

Expand
  • Architecture College, Tianjin University, Tianjin 300072, China

Received date: 2013-01-07

  Revised date: 2013-03-19

  Online published: 2013-06-17

摘要

logistic-CA模型在城市分析应用中,发挥了重要作用,但该模型仅能模拟历史演化趋势下的城市形态演化,无法准确模拟既定年份的城市面积,更无法模拟预测多情景城市形态演化。因此,本文对logistic-CA模型进行了改进:一是嵌入了灰色不等时距预测模型;二是增加不同情景中驱动力的logistic回归系数计算方法。改进后的logistic-CA模型,具备了模拟多情景城市形态演化的能力,模拟预测了天津市滨海地区2011-2020年3种情景的城市形态的演化空间过程特征,即历史外推、内生发展、外生发展3种情景。从而掌握城市形态扩展的必然性、可能性、特定区域的空间扩展影响因素,实现对城市发展过程的有效控制。

本文引用格式

黄焕春, 运迎霞 . 基于改进logistic-CA的城市形态多情景模拟预测分析——以天津滨海地区为例[J]. 地球信息科学学报, 2013 , 15(3) : 380 -388 . DOI: 10.3724/SP.J.1047.2013.00380

Abstract

As one type of CA, logistic-CA now has been successfully adopted in urban studies. But logistic-CA model can only be applied to simulation according to historical evolution trend. Besides, the quantity of prediction in a certain year cannot be correctly obtained. In this study, we have carried out two modifications on the lo-gistic-CA model, one is to insert grey prediction; the other is making the model capable of simulating urban morphology evolution under multi-scenarios. Then we applied this model to simulate and predict urban morphology evolution of the coastal area in Tianjin Municipality, in order to investigate the regularity and characteristics under three scenarios, e.g. historical extrapolation, endogenous development and exogenous development, so as to better grasp urban morphology evolution regularities. The simulation of three scenarios shows that urban morphology inevitably grows followed a cross form,but the characteristic of three scenarios are a lots of differences. Modified logistic-CA model gives full play to the advantage of CA, that is, bottom-up simulation of urban spatial process under multi-scenarios. Through examination, the modified model has a high accuracy in simulation and prediction, which achieves the goal of quantitative simulation and prediction of urban morphology evolution under multi-scenarios. It is necessary for urban planning to master the expansion of the inevitability of urban form, in order to grasp the possibility of a specific area to achieve effective control of the urban development process.

参考文献

[1] Couclelis, H. Cellular worlds: A framework for modelingmicro-macro dynamics[J]. Environment and Planning A,1985,17(5):585-596.

[2] Tobler, W R. Cellular geography. // Gale S & Olsson G(Eds.). Philosophy in geography[M]. Holland: D. ReidelPublishing Company, 1979:379-386.

[3] Batty, M. Generating urban forms from diffusive growth[J]. Environment and Planning A, 1991,23(4):511-544.

[4] Li X, Yang Q, Liu X. Discovering and evaluating urban signaturesfor simulating compact development using cellularautomata[J]. Landscape and Urban Planning, 2008,86(2):177-186.

[5] 刘继生,陈彦光.基于GIS 的细胞自动机模型与人地关系的复杂性研究——关于人地关系研究的技术模式探讨[J]].地理研究,2002,21(2):155-162.

[6] Clarke K C, Gaydos L J. Loose-coupling a cellular automatonmodel and GIS: Long-term urban growth predictionfor San Francisco and Washington/Baltimore[J]. InternationalJournal of Geographical Information Science, 1998,12(7):699-714.

[7] Santé I, García A M, et al. Cellular automata models forthe simulation of real-world urban processes: A review andanalysis[J]. Landscape and Urban Planning, 2010(96):108-122.

[8] Wu F, Yeh A G. Changing spatial distribution and determinants of land development in Chinese cities in the transitionfrom a centrally planned economy t o a socialist marketeconomy: A case study of Guangzhou[J]. Urban Studies,1997, 34(11): 1851- 1879.

[9] Serneels S, Lambin E F. Proximate causes of land usechange in Narks District, Kenya: A spatial statistical modelagriculture[J]. Ecosystems and Environment, 2001(85):65-81.

[10] Cheng J, Masser I. Urban growth pattern modeling: Acase study o f Wuhan city, P. R. China[J]. Landscape andUrban Planning, 2003(62):199-217.

[11] Gobin A. Logistic modeling to derive agricultural landuse determinants: A case study from southeastern Nigeria[J]. Agriculture: Ecosystems and Environment, 2002(89):213-228.

[12] Mertens B, Lambin E F. land cover change trajectories ina frontier region in southern Cameroon[J]. Ann. Assoc.Am. Geog r, 2000(90):467-494.

[13] Verburg P H, SoepboerW, Veldkamp A. Modeling the spatialdynamics of regional land use: The CLUE2S model[J]. Environmental Management, 2002,30(3):391-405.

[14] 罗平,姜仁荣,李红旮,等.基于空间Logistic 和Markov 模型集成的区域土地利用演化方法研究[J].中国土地科学,2010,24(1):31-36.

[15] 吴楷钊,吴波.基于空间相关的逻辑回归模型的城市扩展模拟[J].河南大学学报(自然科学版),2010,40(5):265-273.

[16] Pearman A D. Scenario construction for transportationplanning[J]. Transportation Planning and Technology,1988(7):73-85.

[17] Klosterman R E. The what if Collaborative planning supportsystem[J]. Environment and planning B: Planningand Design, 1999,26(3):393-408.

[18] Landis L D. The California urban future model: A newgeneration of metropolitan simulation models[J]. Environmentand planning B: Planning and Design,1994,21(4):399-420.

[19] Landis L D. Imaging land use futures: Applying the Californiaurban future model[J]. Journal of American PlanningAssociation,1995,61(4):438-457.

[20] Ringland G. Scenario planning: Managing for the future

[M]. New York: JohnWiley,1998,3-15.

[21] 里奇(美)著,邱仲潘,米哲伟,武桂香,等译.自动机理论与应用[M].北京:清华大学出版社,2011,115-218.

[22] Turner M G, O'Neill, et al. Effects of changing spatialscale on the analysis of landscape pattern[J]. LandscapeEcology, 1989(3):153-162.

[23] Wu J, Jelinski D E, Luck M, et al. Multiscale analysis oflandscape heterogeneity: scale variance and pattern metrics[J]. Geographic Information Sciences, 2000,6(1):6-19.

[24] Wu F. A linguistic cellular automata simulation approachfor sustainable land development in a fast growing region[J]. Environment and Urban Systems, 1996,20(6):367-387.

[25] White R, Engelen G. Cellular automata and fractal urbanform: a cellular modeling approach to the evolution of urbanland-use patterns[J]. Environment and Planning, 1993(25):1175-1199.

[26] 黎夏,叶嘉安,刘小平,等.地理模拟系统:元胞自动机与多智能体[M].北京:科学出版社,2007,201-213.

[27] 邓聚龙.灰色数理资源科学导论[M].武汉:华中科技大学出版社,2007,41-62.

[28] 胡斌,曾学贵.不等时距灰色预测模型[J].北方交通大学学报,1998,22(1):34-37.

[29] 熊和金,徐华中.灰色控制[M].北京:国防工业出版社,2005,25-28.

[30] 刘涛,曹广忠.城市用地扩张及驱动力研究进展[J].地理科学进展,2010,29(8):927-934.

[31] 王婧,方创林.城市建设用地增长研究进展与展望[J].地理科学进展,2011,30(11):1440-1448.

[32] 杨云龙,周小成,吴波.基于时空Logistic 回归模型的漳州城市扩展预测分析[J].地球信息科学学报,2011,13(3):374-382.

[33] 刘保晓,黄耀欢,付晶莹,等.天津港区土地利用时空格局变化与驱动力分析[J].地球信息科学学报,2012,14(2):270-278.

文章导航

/