多边形统计数据空间分析的不确定性研究——以北京市海淀区人口普查数据为例
收稿日期: 2012-07-10
修回日期: 2012-12-24
网络出版日期: 2013-06-17
基金资助
国家科技支撑计划项目(2011BAH06B03)
The Uncertainty of Polygon-based Statistical Data Spatial Analysis: Case of Census Data of Haidian District, Beijing
Received date: 2012-07-10
Revised date: 2012-12-24
Online published: 2013-06-17
普查数据是地理学空间分析的重要数据源。由于受到数据与计算机处理能力的限制,以往的研究对普查数据空间分析的不确定性未给予足够重视,也未形成成熟的研究方法。在建筑物单元的人口普查数据支持下,本文基于多边形统计数据的可塑面积单元问题(Modifiable areal unit problem,MAUP)特征,设计了一种该类数据空间分析不确定性的研究方法,采用不同的尺度(Scale)及分区(Zoning)系统对多边形的统计数据空间分析的准确性进行了分析。实验引入尺度与形态指数,利用可视化分析和数据拟合的研究方法,对尺度及分区对空间分析结果的影响模式进行了模拟。研究结果表明:(1)以统计小区的空间分析,其结果受统计小区空间形态的影响较大,不确定性强,不能充分反映统计数据本身的空间特征;(2)规则格网能较好地保持原始统计数据的空间分布特征,但仍然受尺度及分区影响;(3)规则格网的空间分析结果及其准确性与尺度有较好的拟合关系,不同尺度下的分析结果不确定性是原始数据不同尺度特征的体现;(4)分区效应受空间分析方法的计算尺度影响,两者共同对空间分析结果产生影响。对于固定尺度的规则格网,其邻接多边形数目是分析结果不确定的主要原因。本文研究结果表明,在多边形统计数据空间分析时,应该对其使用规则格网重新聚合,并根据实际应用的需求选择多尺度分析方法,以达到实际应用目的。
张小虎, 钟耳顺, 王少华, 张珣, 张济 . 多边形统计数据空间分析的不确定性研究——以北京市海淀区人口普查数据为例[J]. 地球信息科学学报, 2013 , 15(3) : 369 -379 . DOI: 10.3724/SP.J.1047.2013.00369
In statistic geographic information system, census data, stored as polygon attribute, is a kind of polygon- based statistical data. Moreover, in the studies of geography and social science, polygon-based statistical data is a main data source for uncovering spatial patterns of social phenomena by spatial analysis. However, due to the limitation of data and restriction of computer processing power, uncertainty of polygon-based statistical data spatial analysis is always ignored, and there is no well methodology for analyzing such uncertainty. To address this question, we developed a method concerning modifiable areal unit problem (MAUP) to evaluate uncertainty of polygon-based statistical data spatial analysis. The population data collected from each buiding in Beijing makes the mehtod applicable. For MAUP, we considered it as scale and aggregation separately. For polygon- based statistical data, we applied census data of Haidian District (Beijing) with polygons of buildings as its georeference. With this method, we introduced scale and shape indices and applied visual analysis and data fitting to detect the uncertainty of five analysis methods: Sum, Mean, Standard deviation, Global Moran's I and Anselin Local Moran's I (LISA). In addition, the relationships between scale, shape indices and the five analysis methods are also revealed in order to demonstrate the way that MAUP affects polygon-based statistical data spatial analysis. The result of the research shows as follows: (1) the results derived from census data spatial analysis with normal census tracts as zone system are arbitrary and have great uncertainty. (2) The results derived from census data spatial analysis with regular nets as zone system well describe the spatial patterns of original data, but still depend on the scale and zoning of the net system. (3) The results derived from census data spatial analysis with regular grid as zone system, are functionally related to the scale of the grid system, and the uncertainty of the results represents multi-scale spatial patterns of original data. And (4) aggregation together with scale affects census data spatial analysis. With regard to regular net system with fixed scale, the number of the neighbors of each polygon affects the results of the analysis. According to the above, it is better to re-aggregate the census data by regular grid system with proper scale and apply multi-scale methods in polygon-based statistical data analysis.
[1] 廖顺宝,李泽辉.基于人口分布与土地利用关系的人口数据空间化研究——以西藏自治区为例[J].自然资源学报,2003,18(6):659-665.
[2] 陈浩,邓祥征.中国区域经济发展的地区差异GIS 分析[J].地球信息科学学报,2011,13(5):586-593.
[3] 董冠鹏,郭腾云,马静.京津冀都市区经济增长空间分异的GIS分析[J].地球信息科学学报,2010,12(6):797-805.
[4] 安凯,陈炎平,张锦水,等.甘肃省统计地理信息系统建设研究[C].中国地理信息系统协会第三次代表大会暨第七届年会,2003.
[5] 杜培军,张海荣,冷海龙.地理空间分析——原理、技术与软件工具[M].北京:电子工业出版社,2009.
[6] Cressie N. Statistics for spatial data[J]. Terra Nova, 1992,4(5):613-617
[7] Openshaw S. The modifiable areal unit problem[M].Conceptsand Techniques in Modern Geography. Norwich:Geo Book,1984.
[8] Goodchild M F. Issues of quality and uncertainty[M]. NewYork: Elsevier,1991.
[9] 邬伦,于海龙,高振纪,等.GIS 不确定性框架体系与数据不确定性研究方法[J].地理学与国土研究,2002,18(4):1-5.
[10] 史文中.空间数据与空间分析不确定性原理[M].北京:科学出版社,2005.
[11] 李海萍.空间统计分析中的MAUP及其影响[J].统计与决策,2009(22):15-17.
[12] Gehlke C,Biehl K. Certain effects of grouping upon thesize of the correlation coefficient in census tract material[J]. J Am Stat Assoc, 1934,29(185):169-170.
[13] 邬建国,JELINSKI D. 生态学中的格局与尺度-可塑性面积单元问题[M].北京:科学出版社,1995.
[14] Openshaw S, Taylor P. A million or so correlation coefficientsstatistical methods in the spatial sciences[M]. London:Pion,1979,127-144.
[15] Fotheringham A S, Densham P J, Curtis A. The zone definitionproblem in location ‐ Allocation modeling[J].Geogr Anal,1995,27(1):60-77.
[16] Fotheringham A S, Brunsdon C, Charlton M. Quantitativegeography: Perspectives on spatial data analysis[M]. London:Sage Publications Ltd,2000,237-240.
[17] Openshaw S,Rao L. Algorithms for reengineering 1991census geography[J]. Environ Plann A, 1995,27(3): 425-446.
[18] 海淀区第六次全国人口普查领导小组办公室. 海淀区2010 年第六次全国人口普查主要数据公报(1)[OL].海淀区统计局. 2011.
[19] Goodchild M, Anselin L, Deichmann U. A framework forthe areal interpolation of socioeconomic data[J]. EnvironPlann A,1993,25(3):383-397.
[20] Moran P A P. Notes on continuous stochastic phenomena[J]. Biometrika, 1950,37(1/2):17-23.
[21] Anselin L. Local indicators of spatial association—LISA[J]. Geogr Anal, 1995,27(2): 93-115.
[22] 杜国明,张树文,张有全.城市人口分布的空间自相关分析——以沈阳市为例[J].地理研究,2007,26(2):383-390.
[23] Zhang X, Zhong E, Zheng H, et al. Reconstructing continuouspopulation density surface from polygon-based data[C]. IEEE, 2010.
/
〈 | 〉 |