遥感科学与应用技术

通用劈窗算法的NOAA-18(N)AVHRR/3数据地表温度遥感反演与验证

展开
  • 1. 兰州交通大学测绘与地理信息学院,兰州730070;
    2. 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101
孙志伟(1988-),男,山东临沂人,硕士生,研究方向为地表参数的遥感定量反演、GIS应用及开发。E-mail:sunzw@lreis.ac.cn

收稿日期: 2012-12-04

  修回日期: 2013-03-11

  网络出版日期: 2013-06-17

基金资助

国家自然科学基金面上项目(41171287);中国科学院战略性先导科技专项(XDA05050109)。

Retrieval and Validation of Land Surface Temperature with General Split-window Algorithm from NOAA-18(N) AVHRR/3 Data

Expand
  • 1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China;
    2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2012-12-04

  Revised date: 2013-03-11

  Online published: 2013-06-17

摘要

本文以NOAA-18(N)AVHRR/3 数据,运用通用劈窗技术获得地表温度。首先,利用MODTRAN 4 模拟不同地表和大气状况下热红外通道(Ch4,10.3~11.3μm和Ch5,11.5~12.5μm)的星上亮温,并建立模拟数据库。其次,按照地表温度、大气可降水汽含量、地表比辐射率和观测天顶角,对模拟数据库分组,确定出各分组的通用劈窗算法系数。然后,将构建的地表温度反演模型应用到NOAA-18(N)AVHRR/3 数据,模型所需的地表比辐射率由NDVI阈值法确定,大气可降水汽含量是利用Li 等(2003)提出的一种劈窗的协方差与方差比的方法来估算。反演结果表明:在观测天顶角小于30°或者大气可降水汽含量小于3.5 g/cm2时,地表温度反演的均方根误差小于1.0K;在观测天顶角小于45°并且大气可降水汽含量小于5.5g/cm2情况下,均方根误差小于1.5K。最后,利用美国通量站的实测数据对地表温度反演结果进行了验证,结果表明均方根误差小于1.8K。

本文引用格式

孙志伟, 唐伯惠, 吴骅, 程耀东 . 通用劈窗算法的NOAA-18(N)AVHRR/3数据地表温度遥感反演与验证[J]. 地球信息科学学报, 2013 , 15(3) : 431 -439 . DOI: 10.3724/SP.J.1047.2013.00431

Abstract

On the basis of the atmospheric radiative transfer theory, land surface temperature (LST) was retrieved from NOAA-18 (N) AVHRR/3 cloud-free data using a general split-window (GSW) algorithm. A simulated database including the thermal infra-red channels (Channel 4 with spectral range 10.3-11.3μm and Channel 5with spectral range11.5-12.5μm) radiance observed at the satellite level was established with the atmospheric radiative transfer model MODTRAN 4. It covers various land surface types and atmospheric conditions. Then the coefficients of the GSW were determined by grouping the LST, the atmospheric water vapor content (WVC), the land surface emissivity (LSE), and the viewing zenith angle (VZA) by several sub-ranges. Results showed that the root mean square error (RMSE) between the estimated and actual LST is less than 1.0K when the VZA is less than 30° or the WVC is less than 3.5 g/cm2. The RMSE is less than 1.5K when the VZA is less than 45° and the WVC is less than 5.5 g/cm2. In addition, the proposed algorithm was applied to the NOAA-18 (N) AVHRR/3 data to retrieve LSTs. The LSE was determined by using the NDVI thresholds method, and the WVC was estimated with the transmittance ratio method proposed by Li et al. (2003). Finally, the field measured data of the US-Flux stations were used to validate the retrieved LST. The results showed that the RMSE is less than 1.8K.

参考文献

[1] Wan Z M, Dozier J. A generalized split-window algorithmfor retrieving land surface temperature from space[J].IEEE Transactions on Geoscience and Remote Sensing,1996,4(34):892-905.

[2] Becker F, Li Z L. Toward a local split-window methodover land surface[J]. International Journal of Remote Sensing,1990(3):369-393.

[3] Becker F, Li Z L. Surface temperature and emissivity atvarious scales: Definition, measurement and related problems[J]. Remote Sensing Reviews, 1995,12(3-4):225-253.

[4] Sobrino J A, Coll C, Caselles V. Atmospheric correctionsfor land surface remperature using AVHRR channel 4 and 5[J]. Remote Sensing Environment, 1991(38):19-34.

[5] Mcmillin L M. Estimation of sea surface temperaturesfrom two infrared window measurements with different absorption[J]. Journal of Geophysical Research, 1975,80(36):80-82.

[6] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.

[7] 田国良.热红外遥感[M].北京:电子工业出版社,2006.

[8] 梁顺林,范闻捷.定量遥感[M].北京:科学出版社,2009.

[9] Price J C. Land surface temperature measurements fromthe split-window channels of the NOAA 7 AVHRR[J].Journal of Geophysical Research, 1984,89(5):7231-7237.

[10] 覃志豪, ZhangMH,Arnon Karnieli,等. 用NOAA-AVHRR热通道数据演算地表温度的劈窗算法[J].国土资源遥感,2001(2):33-42.

[11] Galve J M, Coll C, Caselles V, Valor E. An atmosphericradiosounding database for generating land surface temperaturealgorithms[J]. IEEE Transactions on Geoscienceand Remote Sensing, 2008,46(5):1547-1557.

[12] Berk A, Bernstein L S, Anderson G P, et al. MODTRANcloud and multiple scattering upgrades with applicationto AVHRIS[J]. Remote Sensing of Environment, 1998(65):367-375.

[13] http://ara.lmd.polytechnique.fr/htdocs-public/products/TIGR/TIGR.html

[14] Tang B H, Bi Y Y, Li Z L, et al. Generalized split-windowalgorithm for estimate of land surface temperature fromChinese Geostationary Fengyun Meteorological Satellite(FY-2C) data[J]. Sensors, 2008,8(2):933-951.

[15] Sobrino J A, Jimenez J C, Soria G, et al. Land surfaceemissivity retrieval from different VNIR and TIR sensors.IEEE Transactions on Geoscience and Remote Sensing,2008,46(2):316-327.

[16] SobrinoJ A, Raissouni N. Toward remote sensing methodsfor land cover dynamic monitoring: Application toMorocco[J]. International Journal of Remote Sensing,2000, 21(2):353-366.

[17] Peres L F, DaCamara C C. Emissivity maps to retrieveland-surface temperature from MSG/SEVIRI[J]. IEEETransactions on Geoscience and Remote Sensing, 2005,8(43):1834-1844.

[18] Li Z L, Jia L, Su Z B, et al. A new approach for retrievingperceptible water from ATSR2 split-window channel dataover land area[J]. International Journal of Remote Sensing,2003, 24(24):5095-5117.

[19] Tang B H, Wu H, Li C R, et al. Estimation of broadbandsurface emissivity from narrowband emissivities. OpticsExpress, 2011,19(1):185-192.

文章导航

/