基于线性光谱混合模型的城市下垫面分类影响因素分析
收稿日期: 2011-10-07
修回日期: 2013-03-01
网络出版日期: 2013-08-08
基金资助
国家自然科学基金重点项目和面上项目(41130748、41171070);教育部人文社会科学研究项目(10YJCZH031);住房和城乡建设部科技计划项目(2011-R2-38);广州市科技和信息化局国际科技交流与合作专项项目(2012J5100044)。
Quantitative Study on Factors for Urban Underlying Surface Classification Using Linear Spectral Mixing Model
Received date: 2011-10-07
Revised date: 2013-03-01
Online published: 2013-08-08
龚建周, 陈健飞, 刘彦随 . 基于线性光谱混合模型的城市下垫面分类影响因素分析[J]. 地球信息科学学报, 2013 , 15(4) : 574 -580 . DOI: 10.3724/SP.J.1047.2013.00574
Based on fusion images of Hyperion and ALOS, using linear spectral mixing model, quantitative analysis on fusion effect and its factors was explored, which included atmospheric correction via FLAASH in ENVI, spatial resolution of image, threshold value for classification of rule images. The results showed that much information would be lost with spatial resolutions becoming coarser, as well as a threshold value existed. Still, correlative coefficients between raw images and coarser resolution images were all larger than 0.90 which indicated images kept their raw spectrum and could be used to identify surface of land. Meanwhile, total accuracy and Kappa coefficient presented downward trend. Total accuracy and Kappa values for classification corrected by FLAASH were larger than that for uncorrected images, while classification map was turned into pieces which were not in accord with the actual condition. Segment threshold of fraction was one of key factors when fraction images were separated into patches to create classification images. While threshold value was from 10% to 60%, total accuracy of classification maps displayed the opposite trend to decrease. The spectrum in a pixel within the area ratio may tend to be balanced, and there was not absolutely dominant spectrum in the pixels. This revealed the value of 50%, commonly adopted, should be used on condition. And Here the different thresholds should be given for different objects.
[1] Lu D S, Moran E, Batistella M. Linear mixture model applied to Amazonian vegetation classification [J]. Remote Sensing of Environment, 2003,87(4):456-469.
[2] 杨国鹏,余旭初,刘伟,等.面向高光谱遥感影像的分类方法研究[J].测绘通报,2007(10):17-20.
[3] 李素,李文正,周建军,等.遥感影像混合像元分解中的端元选择方法综述[J].地理与地理信息科学,2007,23(5):35-38,42.
[4] 李小娟,刘晓萌,胡德勇,等.ENVI遥感影像处理教程(升级版)[M].北京:中国环境科学出版社,2008.
[5] 宁佳,张树文,蔡红艳,等.MOMIS和GLOBOCOVER全球土地覆盖数据集对比分析——以黑龙江流域为例[J].地球信息科学学报,2012,14(2):240-249.
[6] Van der Meer F D, Jia X P. Collinearity and orthogonality of end members in linear spectral unmixing[J]. International Journal of Applied Earth Observation and Geoinformation, 2011(18):491-503.
[7] 龚建周,陈健飞,刘彦随.高光谱影像地物识别不同方法的效果比较[J].广州大学学报(自然科学版),2011,10(5):69-75.
[8] 赵锐.混合像元线性分解的精度估算[J].测绘与空间地理信息,2010,33(6):187-190.
[9] 罗红霞,龚健雅.UFCLS线性光谱混合分析法在遥感图像分类识别中的效果分析[J].武汉大学学报?信息科学版,2004,29(7):615-618.
[10] 陈健飞,林征,陈颖彪.基于高光谱线性混合光谱分解识别人工地物[J].应用基础与工程科学学报,2009,17(2):206-218.
[11] 王帅杰,朱坦,冯银厂,等.改变城市下垫面类型及控制道路尘环境效益评估方法[J].安全与环境学报,2004,4(5):52-55.
[12] 胡潭高,张锦水,贾斌,等.不同分辨率遥感图像混合像元线性分解方法研究[J].地理与地理信息科学,2008,24(3):20-23,40.
[13] 于萍,黄冬雁,Revis Joana, 等.不同嗓音样本对嗓音听感知评估的影响[J].听力学及言语疾病杂志,2004,12(3):164-167,170.
[14] 赵英时.美国中西部沙山地区环境变化的遥感研究[J].地理研究,2001,20(2):210-219.
[15] 张秋爽,祝民强,刘碧洪. Hyperion高光谱遥感数据大气校正方法[J].计算机测量与控制,2010,18(1):220-221.
/
〈 | 〉 |