地球信息科学理论与方法

基于模型耦合的土地利用变化和水文响应多情景分析

展开
  • 1. 中国科学院寒区旱区环境与工程研究所, 兰州 730000;
    2. 中国科学院大学, 北京 100049
张凌(1988-),四川巴中人,硕士生,主要从事水文水资源的情景分析研究。E-mail:zhanglingky@126.com

收稿日期: 2013-11-08

  修回日期: 2013-12-30

  网络出版日期: 2013-12-25

基金资助

国家自然科学基金项目(91125006)。

Coupling LUCC and Hydrological Models to Predict Land Use Change and Hydrological Response under Multiple Scenarios

Expand
  • 1. Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2013-11-08

  Revised date: 2013-12-30

  Online published: 2013-12-25

摘要

排放情景下未来气候变化和土地利用变化及其水文响应是流域管理十分关心的问题。本文通过耦合土地利用/覆被变化模型Dyna-CLUE和水文模型SWAT,选择政府间气候变化专门委员会(IPCC)发布的两个温室气体排放情景(A1B和B1),对黑河流域中上游土地利用变化及水文响应进行情景分析。模型校准和验证结果表明,Dyna-CLUE和SWAT的模拟精度均比较满意。土地利用变化情景分析表明,不同排放情景下未来黑河流域中上游土地利用变化幅度均不大,同一情景下土地利用变化在中上游表现出各自的特点。水文响应多情景分析表明,不考虑土地利用变化,相对于参考情景即以1990-2009年历史数据模拟结果,高排放A1B情景下黑河流域上游和中游2011-2030年年平均河川径流分别呈微弱减少和明显增加的趋势,而低排放B1情景下分别呈明显减少和微弱减少的趋势。同一情景下,水文响应具有明显的区域差异性。考虑土地利用变化,高排放A1B情景下黑河流域上游和中游2011-2030年年平均河川径流分别小于和大于不考虑土地利用变化的情况,低排放B1情景下均小于不考虑土地利用变化的情况。分析表明,排放情景下气候变化和土地利用变化导致流域水文水资源的变化,而土地利用变化可能加剧或削弱气候变化导致的水文响应。

本文引用格式

张凌, 南卓铜, 余文君 . 基于模型耦合的土地利用变化和水文响应多情景分析[J]. 地球信息科学学报, 2013 , 15(6) : 829 -839 . DOI: 10.3724/SP.J.1047.2013.00829

Abstract

Land use and climate change under emission scenarios and their hydrological responses are some most concerned issues in watershed management. By coupling a land use land change model, Dyna-CLUE, and a hydrological model, SWAT, this paper predicts land use changes and hydrological responses in the upper and middle reaches of Heihe River Basin (HRB) under two emission scenarios, A1B and B1, from the Intergovernmental Panel on Climate Change (IPCC). After calibration, the models validate their applicability in the study area. Scenario analysis shows no obvious land use changes in the upper and middle reaches of HRB with both emission scenarios while with a same scenario, land use changes present regional characteristics. In terms of future hydrological responses, if we only consider the climate change, comparing to the reference scenario that is created with historical data of 1990~2009, mean annual streamflow in the period of 2011~2030 shows a slight decrease in the upper reaches of HRB and an obvious increase in the middle reaches under the high emission scenario (A1B), and an obvious decrease and a slight decrease respectively under the low emission scenario (B1). Under a same scenario, hydrological responses present regional characteristics in the upper and middle reaches. As climate change also causes land use change which in turn impacts hydrological responses, we compare the joint impact case with the case of climate change only. Mean annual streamflow in the period of 2011~2030 becomes less in the upper reache and greater in the middle reache under the high emission scenario (A1B), and less in both reaches under the low emission scenario (B1). The analysis indicates that climate and land use changes under emission scenarios in the study area will lead to hydrological and water resources changes and the land use change may intensify or weaken hydrological responses caused by climate change.

参考文献

[1] 程国栋, 赵传燕.干旱区内陆河流域生态水文综合集成研究[J].地球科学进展, 2008, 166(10):1005-1012.

[2] 廉宁霞.试论黑河流域的生态环境及其保护[J].甘肃农业科技, 2008, 389(5):34-36.

[3] 张法霖, 王金叶, 常宗强.黑河流域生态环境建设与和谐社会构建[J].中国水土保持, 2006(5):15-17.

[4] 程国栋.黑河流域可持续发展的生态经济学研究[J].冰川冻土, 2002, 24(4):335-343.

[5] 孙力炜, 张勃, 张建香, 等.内陆河流域土地利用/覆盖变化的生态效益评价——以疏勒河中下游地区为例[J].干旱区资源与环境, 2013, 27(3):80-85.

[6] Cammerer H, Thieken A H, Verburg P H. Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria)[J]. Natural Hazards, 2012, 1-28.

[7] Mango L M, Melesse A M, Mcclain M E, et al. Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: Results of a modeling study to support better resource management[J]. Hydrology and Earth System Sciences, 2011, 15(7):2245.

[8] Park J Y, Park M J, Joh H K, et al. Assessment of MIROC 3. 2 HiRes climate and CLUE-s land use change impacts on watershed hydrology using SWAT[J]. Transactions of the ASABE, 2011, 54(5):1713-1724.

[9] 蒙吉军, 吴秀芹, 李正国.黑河流域1988-2000年土地利用/覆被变化研究[J].北京大学学报:自然科学版, 2005, 40(6):922-929.

[10] 李传哲, 于福亮, 刘佳, 等.近20年来黑河干流中游地区土地利用/覆被变化及驱动力定量研究[J].自然资源学报, 2011, 26(3):353-363.

[11] 姜朋辉, 赵锐锋, 赵海莉, 等.1975年以来黑河中游地区土地利用/覆被变化时空演变[J].生态与农村环境学报, 2012, 28(5):473-479.

[12] 张华, 张勃.不同水资源情景下干旱区未来土地利用/覆盖变化模拟——以黑河中上游张掖市为例[J].冰川冻土, 2007, 29(3):397-405.

[13] 吴志勇, 郭红丽, 金君良, 等.气候变化情景下黑河流域极端水文事件的响应[J].水电能源科学, 2010, 28(2):7-9, 46.

[14] 陈亮.基于区域气候模式和VIC模型的黑河流域陆气相互作用研究[D].兰州:兰州大学, 2011, 1-69.

[15] Liston G E, Elder K. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)[J]. Journal of Hydrometeorology, 2006, 7(2):217-234.

[16] Verburg P H, Overmars K P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model[J]. Landscape Ecology, 2009, 24(9):1167-1181.

[17] Verburg P H, Overmars K P, Huigen M G A, et al. Analysis of the effects of land use change on protected areas in the Philippines[J]. Applied Geography, 2006, 26(2):153-173.

[18] Verburg P H, Soepboer W, Veldkamp A, et al. Modeling the spatial dynamics of regional land use: The CLUE-S model[J]. Environmental Management, 2002, 30(3):391-405.

[19] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社, 2003, 203-208.

[20] Gassman P W, Reyes M R, Green C H, et al. The soil and water assessment tool: Historical development, applications, and future research directions[J]. Transactions of the ASABE, 2007(50):1211-1250.

[21] 余文君.SWAT模型在黑河山区流域的改进与应用[D].南京:南京师范大学, 2012, 1-50.

[22] 李呈罡. SWAT模型在黑河中上游流域的改进与集成模拟研究[D].南京:南京师范大学, 2012, 1-51.

[23] 黄清华, 张万昌.SWAT分布式水文模型在黑河干流山区流域的改进及应用[J].南京林业大学学报(自然科学版), 2004, 28(2):22-26.

[24] Diaz-Nieto J, Wilby R L. A comparison of statistical downscaling and climate change factor methods: Impacts on low flows in the River Thames, United Kingdom[J]. Climate Change, 2005, 69(2):245-268.

[25] Hay L E, Wilby R L, Leavesley G H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States[J]. JAWRA Journal of the American Water Resources Association, 2000, 36(2):387-397.

[26] Morita T. Greenhouse gas emission scenario database ver 5.0 operating manual[EB/OL]. Japan: National Institute for Environmental Studies Center for Global Environmental Research, 1999.

[27] Morita T. Emission scenario database prepared for IPCC Special Report on Emission Scenarios[R]. IPCC, 1999.

[28] 李娜, 颜长珍, 廖杰.黑河中游分水前后林草变化动态监测[J].生态学杂志, 2009, 28(9):1719-1722.

[29] Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3):885-900.

[30] Henriksen H, Troldborg L, Nyegaard P, et al. Methodology for construction, calibration and validation of a national hydrological model for Denmark[J]. Journal of Hydrology, 2003, 280(1):52-71.

文章导航

/