遥感图像信息容量约束区间的选择与空间分异性
收稿日期: 2013-07-16
修回日期: 2013-08-21
网络出版日期: 2014-01-05
基金资助
国家自然科学基金项目(41071271)。
Spatial Variation and Constraint Domain Selection of Remote Sensing Image Information Capacity
Received date: 2013-07-16
Revised date: 2013-08-21
Online published: 2014-01-05
遥感图像信息容量是一种能量化表征地表复杂度的评价指标。计算时考虑了像元点所处的整个局部区域特征,其大小与图像灰度层次密切相关,灰度层次越丰富,信息容量的值越大。信息容量模型构建的核心问题是约束区间的选择和参数的确定,合理适宜的参数设置是保证信息容量特性的关键性技术。选取陕西省不同地貌类型区56个样区,以2007年ETM+和2008年SPOT5遥感图像为实验数据。采用了2种不同的约束区间的计算方法,即比较分析和数理统计的方法,分析了遥感图像信息容量约束区间的选择方法和空间分异规律。结果表明,信息容量在一定程度上能有效反映地表空间形态结构的复杂度,信息容量和分形维数、信息熵之间有较好的线性相关性,随着信息容量的增大,样区的分形维数、信息熵也在增大。信息容量的空间分异和陕北黄土高原的黄土地貌形态在空间上的变异是相关的,与陕西关中平原区的地表地物覆盖类型也是相关的,可作为地表形态结构复杂度定量评价指标之一。
王旭红, 李飞, 张哲, 秦慧杰, 刘晓宁, 李钢 . 遥感图像信息容量约束区间的选择与空间分异性[J]. 地球信息科学学报, 2014 , 16(1) : 108 -116 . DOI: 10.3724/SP.J.1047.2014.00108
Information capacity is a quantity unit of pixel density information. Center pixel and neighboring pixels will all be taken into account in the calculation of information capacity. The value of information capacity is closely related to the image gray levels. The more the gray level is, the greater the information capacity value will be. Thus, information capacity can objectively and effectively express land surface spatial structural information. However, the core issue of information capacity theory is the selection of the constraint domain and the determination of parameters. And appropriate setting of parameters is a key technology to ensure the accurateness of information capacity. In this study, 56 different landform areas of Shaanxi Province were selected as test areas, using the research result of remote sensing images in 2007 ETM + and 2008 SPOT5 as experimental data. According to this, two different calculation method of constraints domain in information capacity were adopted by using comparative analysis and mathematical statistics, which analyzed constraint domain selection and spatial distribution of the remote sensing image information capacity. All these experimental results show that information capacity can reflect the surface spatial structure complexity to a certain extent, and it exits a better linear relationship between information capacity and fractal dimension / information entropy, respectively. Information capacity also increases with the increase of fractal dimension and information entropy. Spatial distribution of information capacity is correlative with topographic feature of loess landform, as the same correlation with the surface spatial structure complexity of land cover types in the Central Shaanxi Plain. So, information capacity can be taken as a discriminate factor to identify the surface complexity.
[1] 殷德奎, 俞卞章.基于多维直方图的灰度图像质量评价[J].模式识别与人工智能, 1996, 9(3):265-270.
[2] 殷德奎, 俞卞章, 佟明安.红外热图像质量评定方法[J].激光与红外, 1996, 26(2):75-79.
[3] 屈颖歌, 曾生根, 夏德深.从图像信息容量和图像功率谱看CBERS-1卫星图像[J].航天返回与遥感, 2002, 23(2):40-42.
[4] 戴奇燕, 尤建洁, 胡晔.细节信息容量与MTF相关分析[J].航天返回与遥感, 2005, 26(4):15-19.
[5] 王旭红, 张哲, 秦慧杰, 等.第十八届中国遥感大会论文集"不同地貌类型区遥感图像信息容量的差异性研究"[C].北京:科学出版社, 2012, 562-568.
[6] Wang X H, Qin H J, Jia B J. Analysis on correlation between information capacity of NDVI and fractal dimension at different landscape zones[C]. The 2nd International Conference On Information Science and Engineering: IEEE, 2010, 6446-6450.
[7] Hsu C L. An indicator research of the terrain complexity-a classification of gully scale based on DEM[D]. Taibei: Taiwan University, 2002.
[8] 刘新华, 杨勤科, 汤国安.中国地形起伏度的提取及在水土流失定量评价中的应用[J].水土保持通报, 2001, 21(1):57-62.
[9] 李志林, 朱庆.数字高程模型[M].北京:科学出版社, 2003.
[10] Tucker G E, Bras R L. Hill slope processes, drainage density, and landscape morphology[J]. Water Resources Research, 1998, 34(10):2751-2764.
[11] Hobson R D. FORTRAN IV programs to determine the surface roughness in topography for the CDC 3400 computer[C]. State Geol Survey Kansas, 1967, 1-28.
[12] Hobson R D. Surface roughness in topography: Quantitative approach[C]. Spatial Analysis in Geomorphology, 1972, 25-245.
[13] Shary P A, Sharaya L S, Mitusov A V. Fundamental quantitative method of land surface analysis[J]. Geoderma, 2002(107):1-32.
[14] 周侗, 龙毅, 汤国安, 等.面向DEM地形复杂度分析的分形方法研究[J].地理与地理信息科学, 2006, 22(1):26-30.
[15] 龙毅, 周侗, 汤国安, 等.典型黄土地貌类型区的地形复杂度分形研究[J].山地学报, 2007(4):385-392.
[16] 朱永清, 李占斌, 鲁克新, 等.地貌形态特征分形信息维数与像元尺度关系研究[J].水利学报, 2005, 36(3):333-338.
[17] 朱绍攀, 张书毕.分形地形复杂度研究[J].地理空间信息, 2011, (3):117-119.
[18] Tang G A.A research on the accuracy of DEMS[M]. Beijing-New York: Science Press, 2000.
[19] Shan J, Muhammad Z, Ejaz H. Study on accuracy of 1-degree DEM versus topographic complexity using GIS zonal analysis[J].Journal of Surveying Engineering, 2000, 129(2):85-89.
[20] 张哲.遥感图像信息容量的模型构建与差异性研究[D].西安:西北大学, 2012.
[21] 赵英时等编著.遥感应用分析原理与方法[M].北京:科学出版社, 2003.
[22] 秦慧杰. 不同地貌类型区遥感图像的信息容量[D]. 西安: 西北大学, 2011.
[23] Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948(27):379-423.
[24] Mendicino G, Sole A. The information content theory for the estimation of the topographic index distribution used in TOPMODEL[J]. Hydrological Process, 1997, 11(9):1099-1114.
[25] 陈楠, 汤国安, 刘咏梅, 等.基于不同比例尺的DEM地形信息比较[J].西北大学学报(自然科学版), 2003, 33(2):237-240.
[26] 王雷.黄土高原数字高程模型的地形信息容量研究[D].西安:西北大学, 2005.
[27] 李发源, 汤国安, 贾旖旎, 等.坡谱信息熵尺度效应及空间分异[J].地球信息科学, 2007, 9(8):13-18.
[28] 郭建明.分形理论在遥感图像空间尺度转换中的应用研究[D].西安:西北大学, 2008.
/
〈 | 〉 |