遥感科学与应用技术

基于TM影像属性和形态特征的土地覆被制图方法

展开
  • 南京大学国际地球系统科学研究所, 江苏省地理信息技术重点实验室, 南京 210023
姜洋(1988-),女,硕士生,主要从事资源环境遥感方面的研究。E-mail:jy881120@126.com

收稿日期: 2013-03-18

  修回日期: 2013-04-25

  网络出版日期: 2014-01-05

基金资助

陆地生态系统固碳参量遥感监测及估算技术研究(XDA05050109);全球森林生物量和碳储量遥感估测关键技术(2012AA120906)。

Land Cover Mapping Method Based on TM Image Attribute Characteristics and Morphological Characteristics

Expand
  • International Institute for Earth System Science, Nanjing University, Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China

Received date: 2013-03-18

  Revised date: 2013-04-25

  Online published: 2014-01-05

摘要

本文以浙江省中南部地区不同时相30m分辨率的2景TM影像为基本数据,采用面向对象的方法实现了研究区的土地覆被制图。首先,在eCognition软件中采用多尺度分割算法,以光谱信息、纹理特征、几何特征等实现研究区的对象分割,使分割后的对象边界与实际地物边界尽量保持一致,通过建立多层次地物特征规则,进行最优分割尺度下的遥感多层次识别分类;然后,分析可用于分类的属性特征和形态特征,通过对这些特征的统计值对比分析,选取了对象的紧致度、长宽比、MNDWI、LBV等特征构建了决策树模型,实现了研究区1:25万的土地覆被分类;最后,采用目视解译和野外样本2种方式对分类结果进行精度验证,其中,目测随机样点评价得到的总体精度为87.66%,野外样本点评价得到的总体精度为83.38%。研究表明:面向对象的分类方法不仅具有较高的精度,而且图斑与实际地物边界能较好地吻合,很好地避免了混合像元误分的现象,同时能消除像元分类的“椒盐现象”。

本文引用格式

姜洋, 李艳, 刘东 . 基于TM影像属性和形态特征的土地覆被制图方法[J]. 地球信息科学学报, 2014 , 16(1) : 117 -125 . DOI: 10.3724/SP.J.1047.2014.00117

Abstract

The land cover map of 30m resolution is generated based on object-oriented method using multi-temporal TM/ETM+ images of central-southern part of Zhejiang Province. The technical process is divided into the following steps. First, multi-scale segmentation algorithm using spectral information, texture characteristics and geometric features is employed to the images of the study area, making the object boundary after segmentation consist to the actual terrain boundaries as far as possible. And by establishing the multi-level object feature roles, we can get different types of the land use with their own extraction scales. This paper uses three-layer split system, the first for parent objects such as woodland and farmland, the second for child objects such as evergreen forest and deciduous forest, and the third for smaller objects such as evergreen coniferous forest and deciduous broadleaved forest. Then, through the analysis of these statistic characteristics, attribute characteristics of MNDWI, LBV and morphological characteristics of compactness, aspect ratio which can be used in classification are analysed, and a decision tree model is constructed to implement the 1:2500 00 land cover mapping of the study area. At last, the precision test of the results are made using two methods of visual interpretation and field validation, and the overall accuracy of visual measurement is 87.66% and the precision of field validating is 83.38%. This article focuses on integration of decision tree algorithm, multi-scale segmentation techniques, hierarchical classification and object-oriented classification method. The results show that the classification method based on object-oriented method not only has high precision, but also realizes the boundaries' coinciding of graph spot and practical ground objects and limits the phenomenon of the wrong classification to the mixed pixels very well. It can also eliminate "pepper phenomenon" based on pixel classification.

参考文献

[1] 莫利江, 曹宇, 胡远满, 等.面向对象的湿地景观遥感分类——以杭州湾南岸地区为例[J].湿地科学, 2012, 10(2):206-213.

[2] 李成范, 尹京苑, 赵俊娟.一种面向对象的遥感影像城市绿地提取方法[J].测绘科学, 2011, 36(5):112-114.

[3] 孙志英, 赵彦锋, 陈杰, 等.面向对象分类在城市地表不可透水度提取中的应用[J].地理科学, 2007, 27(6):837-842.

[4] 邓媛媛, 巫兆聪, 易俐娜, 等.面向对象的高分辨率影像农用地分类[J].国土资源遥感, 2010(4):117-121.

[5] 蔡亮, 郭泺.基于面向对象方法的汶川大地震灾害土地覆盖变化[J].生态学报, 2009, 28(12): 927-937.

[6] 孙永军, 童庆禧, 秦其明.利用面向对象方法提取湿地信息[J].国土资源遥感, 2008(1):79-82.

[7] Townsend P A, Walsh S J. Remote sensing of forested wetlands: Application of multitemporal and multispectral satellite imagery to determine plant composition and structure in southeastern USA[J]. Plant Ecology, 2001, 157(2):129-149.

[8] 师庆东, 吕光辉, 潘晓玲, 等.遥感影像中分区分类法及在新疆北部植被分类中的应用[J].干旱区地理, 2003, 26(3):264-268.

[9] 地球系统科学数据共享平台. http://www.geodata.cn/Portal/?isCookieChecked=true.

[10] 龚明劼, 张鹰, 张芸.卫星遥感制图最佳影像空间分辨率与地图比例尺关系探讨[J].测绘科学, 2009, 34(4):232-233.

[11] 张海霞, 卞正富.遥感影像植被信息提取方法研究及思考[J].地理空间信息, 2007, 5(6): 65-67.

[12] 曾志远.卫星遥感图像计算机分类与地学应用研究[M].北京:科学出版社, 2004.

[13] 栗敏光, 范洪冬, 邓喀中.基于LBV变换的TM数据水体提取新方法[J].测绘科学, 2010, 35(3):138-139.

[14] 吴健平, 杨星卫.遥感数据监督分类中训练样本的纯化[J].国土资源遥感, 1996(1):36-41.

[15] 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报, 2005, 9(5): 589-595.

[16] 葛春青, 张凌寒, 杨杰.基于决策树规则的面向对象遥感影像分类[J].遥感信息, 2009(2):86-90.

[17] Desclée, B., P. Bogaert and P. Defourny, Forest change detection by statistical object-based method[J]. Remote Sensing of Environment, 2006, 102(1):1-11.

[18] 贾坤, 李强子, 田亦陈, 等.遥感影像分类方法研究进展[J].光谱学与光谱分析, 2011, 31(10):619-620.

[19] 李秦, 高锡章, 张涛.最优分割尺度下的多层次遥感地物分类实验分析[J].地球信息科学学报, 2011, 13(3):409-412.

[20] 卢玲, 李新, 董庆罕.SPOT4-VEGETATION 中国西北地区土地覆盖制图与验证[J].遥感学报, 2003, 7(3):214-220.

[21] 张增祥, 汪潇, 王长耀.基于框架数据控制的全国土地覆盖遥感制图研究[J].地球信息科学学报, 2009, 11(2):216-224.

文章导航

/