遥感科学与应用技术

复杂地形山区Landsat TM影像C校正策略与实验

展开
  • 云南大学国际河流与生态安全研究院, 云南省国际河流与跨境生态安全重点实验室, 昆明 650091
李翠翠(1988-),女,河南新乡人,硕士生,主要研究方向为环境遥感。E-mail:licuicui20120@163.com

收稿日期: 2013-03-19

  修回日期: 2013-08-04

  网络出版日期: 2014-01-05

基金资助

国家自然科学基金项目(41061010);国家“十二五”科技支撑计划课题(2013BAB06B03、2011BAC09B07)。

Analysis and Comparison Test on C-correction Strategies and Their Scale Effects with TM Images in Rugged Mountainous Terrain

Expand
  • Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650091, China

Received date: 2013-03-19

  Revised date: 2013-08-04

  Online published: 2014-01-05

摘要

采用分坡度、分NDVI(归一化差异植被指数)和分地类的C校正策略,对复杂地形山区Landsat TM影像进行地形校正,并运用视觉检验、回归分析和遥感分类精度将3种C校正策略的结果与传统的整体C校正进行对比,以探寻适合复杂地形山区的C校正策略。在此基础上,进一步探讨了地形校正对影像重采样尺度的响应。研究结果表明:与传统的整体C校正相比,采用分坡度、分NDVI和分地类的C校正策略能更好地消除原影像的凹凸感,减弱地形效应,且背阳面影像的过校正现象减少;各种C校正策略和整体C校正对Landsat TM影像不同波段的校正效果不一,其中,分地类的C校正策略对波段1、2、3和波段7的校正效果最好,分坡度的C校正策略对波段5的校正效果更佳,而整体C校正则对波段4的校正效果最好;虽然所有C校正均能有效地消除影像中的地形效应,但并未能提高影像分类精度;从不同重采样尺度C校正结果对比看,随着采样尺度增加,地形效应逐渐减弱,但并未完全消除,因此,中、低空间分辨率遥感影像的地形效应也不容忽视。

本文引用格式

李翠翠, 樊基仓, 付潇华, 樊辉 . 复杂地形山区Landsat TM影像C校正策略与实验[J]. 地球信息科学学报, 2014 , 16(1) : 134 -141 . DOI: 10.3724/SP.J.1047.2014.00134

Abstract

Topographic correction for remotely sensed images is an important preprocessing step to remove the topographic effects in rugged mountainous terrain. In this study, different C-correction strategies (determining the empirical c-parameter for different NDVI intervals, different land use types, and different slope intervals) and scale levels are used to eliminate the effects of topography on Landsat TM images in complex mountains terrain. Performance of the three strategies was tested by visual comparison, correlation analysis between corrected images and the solar illumination angle (cosi), and image classification accuracy. It is attempted to find a C-correction strategy more suitable for mountainous area. The test site selected for this study is Nanting River basin, which is a subbasin of the Nujiang-Salween River. Visual comparisons showed that all the three strategies of C-correction can substantially eliminate negative terrain effects. All the C-correction strategies, similar to the global C-correction, resulted in over-correction phenomenon to different degree. The landuse-specific C-correction performs best on band 1, band 2, band 3 and band 7, the global C correction performs best on the band 4, while the slope-specific C-correction performs best on band 5. To achieve the best effect, different bands can be considered to take different strategies. Although these C-correction strategies can remove negative terrain effects, classification accuracy of Landsat TM images was not improved in our pilot area. Topography obviously affects remote sensing images with high spatial resolution, however, the effects of terrain on remote sensing images with low spatial resolution cannot be ignored.

参考文献

[1] Chen W, Cao C. Topographic correction-based retrieval of leaf area index in mountain areas[J]. Journal of Mountain Science, 2012, 9(2):166-174.

[2] 高永年, 张万昌.遥感影像地形校正研究进展及其比较实验[J].地理研究, 2008, 27(2):467-477, 484.

[3] 段四波, 阎广建.山区遥感图像地形校正模型研究综述[J].北京师范大学学报(自然科学版), 2007, 43(3):362-366.

[4] 黄博, 徐丽华.基于改进型Minnaert地形校正模型的应用研究[J].遥感技术与应用, 2012, 27(2):183-189.

[5] 秦春, 王建.CIVCO地形校正模型的改进及其应用[J].遥感技术与应用, 2008, 23(1):82-88.

[6] 李小文, 赵红蕊, 张颢, 等.全球变化与地表参数的定量遥感[J].地学前缘(中国地质大学), 2002, 9(2):365-370.

[7] 张兆明, 何国金, 刘定生, 等.一种改进的遥感影像地形校正物理模型[J].光谱学与光谱分析, 2010, 30(7):1839-1842.

[8] 张旭, 刘新春, 肖继东, 等.EOS/MODIS影像处理在塔里木河下游植被监测中的应用[J].干旱区研究, 2005, 22(4):116-120.

[9] 王开存, 周秀骥, 刘晶淼.复杂地形对计算地表太阳短波辐射的影响[J].大气科学, 2004, 28(4):625-633.

[10] Zhang Z, DeWulf R R, Van Coillie F M B, et al. Influence of different topographic correction strategies on mountain vegetation classification accuracy in the Lancang Watershed, China[J]. Journal of Applied Remote Sensing, 2011, 5(1):053512(1-21).

[11] 樊基仓.复杂地形山区土地利用/覆被变化及对生态系统服务价值影响的多尺度研究[D].昆明:云南大学, 2012.

[12] 黄微, 张良培, 李平湘.一种改进的卫星影像地形校正算法[J].中国图象图形学报, 2005, 10(9):1124-1128, 1069.

[13] Gu D G, Gillespie A R, Adams J B, et al. A statistical approach for topographic correction of satellite images by using spatial context information[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1):236-246.

[14] Iikura Y. Topographic effects observed in shadowed pixels in satellite imagery[C]. Geoscience and Remote Sensing Symposium, 2002, 3489-3491.

[15] Riano D, Chuvieco E, Salas J, et al. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(5):1056-1061.

[16] 闻建光, 柳钦火, 肖青.基于模拟数据分析地形校正模型效果及检验[J].北京师范大学学报(自然科学版), 2007, 43(3):255-263.

[17] 钟耀武, 刘良云, 王纪华, 等.基于矩匹配算法的山区影像地形辐射校正方法研究[J].地理与地理信息科学, 2006, 22(1):31-34, 39.

[18] Gao Y, Zhang W. A simple empirical topographic correction method for ETM+ imagery[J]. International Journal of Remote Sensing, 2009, 30(9):2259-2275.

[19] Mcdonald E R., Wu X, Caccetta P A, et al. Illumination correction of Landsat TM data in south east NSW[C]. Proceedings of the Tenth Australasin Remote Sensing and Photogrammetry Conference, Adelaide, Australia, 2000, 21-25.

[20] Reese H, Olsson H. C-correction of optical satellite data over alpine vegetation areas: A comparison of sampling strategies for determining the empirical c-parameter[J]. Remote Sensing of Environment, 2011, 115(6):1387-1400.

[21] Kobayashi S, Sanga-Ngoie K. A comparative study of radiometric correction methods for optical remote sensing imagery: the IRC vs. other image‐based C‐correction methods[J]. International Journal of Remote Sensing, 2008, 30(2):285-314.

[22] Hantson S, Chuvieco E. Evaluation of different topographic correction methods for Landsat imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(5):691-700.

[23] Stickler C M, Southworth J. Application of multi-scale spatial and spectral analysis for predicting primate occurrence and habitat associations in Kibale National Park, Uganda[J]. Remote Sensing of Environment, 2008, 112(5):2170-2186.

[24] 董德进, 周国模, 杜华强, 等. 6种地形校正方法对雷竹林地上生物量遥感估算的影响[J].林业科学, 2011, 47(12):1-8.

[25] Richter R, Kellenberger T, Kaufmann H. Comparison of topographic correction methods[J]. Remote Sensing, 2009, 1(3):184-196.

[26] Vincini M, Frazzi E. Multitemporal evaluation of topographic normalization methods on deciduous forest TM data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11):2586-2590.

[27] 黄微, 张良培, 李平湘.基于地形区域分割的复杂地区遥感影像分类[J].武汉大学学报(信息科学版), 2007, 32(9):791-795.

[28] Carpenter G A, Sucharita G, Macomber S, et al. A neural network method for mixture estimation for vegetation mapping[J]. Remote Sensing of Environment, 1999, 70(2):138-152.

[29] 苏理宏, 李小文, 黄裕霞.遥感尺度问题研究进展[J].地球科学进展, 2001, 16(4):544-548.

[30] 贺少帅.高分辨率卫星影像快速几何纠正研究[D].长沙:中南大学, 2009.

[31] Woodcock C E, Strahler A H. The factor of scale in remote sensing[J]. Remote Sensing of Environment, 1987, 21(3):311-332.

[32] Moody A, Woodcock C. The influence of scale and the spatial characteristics of landscapes on land-cover mapping using remote sensing[J]. Landscape Ecology, 1995, 10(6):363-379.

[33] Marceau D J, Howarth P J, Gratton D J. Remote sensing and the measurement of geographical entities in a forested environment. 1. The scale and spatial aggregation problem[J]. Remote Sensing of Environment, 1994, 49(2):93-104.

文章导航

/