位置服务的上下文信息模型
收稿日期: 2013-04-18
修回日期: 2013-07-20
网络出版日期: 2014-03-10
基金资助
国家自然科学基金项目(41001313);国家“863”高技术发展研究计划项目(2013AA12A204)。
Design and Implementation of the Context-aware Location Based Service Model
Received date: 2013-04-18
Revised date: 2013-07-20
Online published: 2014-03-10
在位置服务领域,用户所处环境的上下文信息在分析、处理请求,以及推送相应的位置信息服务方面发挥着至关重要的作用。目前,如何存储和管理上下文位置信息缺乏统一的模型和标准,本文对此提出了一种全新的位置服务的上下文信息模型。利用User Context(< User >,< Time >,< Location >,< Surroundings >,< Demand >)5元素模型描述位置服务上下文信息中5个信息元素(用户信息、时间信息、位置信息、环境信息、用户需求信息),这5个信息元素均是直接因素,彼此独立且获取方便,人为干预少;同时,利用数据库技术可将5元素模型抽象成5元素表形式存储于数据表中,以便高效检索。最后,通过分析5元素模型中的不同信息元素,可推理出基于搜索关键词的用户需求偏好及基于时间和位置信息的用户轨迹(用户行为、热点区域、用户兴趣)。
齐凌艳, 陈荣国 . 位置服务的上下文信息模型[J]. 地球信息科学学报, 2014 , 16(2) : 191 -198 . DOI: 10.3724/SP.J.1047.2014.00191
In the area of location service, the location information of user based on context-aware play an important role in analyzing, processing and sending location information service. That is, if using the context about the environment around the user well, we could analyze the request of the user better and provide the most appreciate service to the users in time which could indeed meet the users' request. However, how to store and manage context information, we have not a uniform model and standard yet. Moreover, there is no specific model designed for the location context information of user. This paper applies the 5-ary model which is designed to express context information to propose a new method specifically for the location information based on context-aware of the user. The model is: User Context (< User >,< Time >,< Location >, < Surroundings >,< Demand >). This model could state the five key information elements, that is user information, location information, time, surroundings information and user demand information. These five elements are direct and independent. Moreover, they could be acquired easily. The user information may include name, sex, job, major of the user and so on. The location is made up with two parts: textual address and coordinate. The coordinate information is usually gathered by GPS. The surrounding information is about weather and temperature which could be received from the relevant website. And the demand information is text which is used to describe the user's demand or request, mostly about restaurant, shopping, entertainment and so on. Then, store the users' location context information into a database in the way of the 5-ary to improve the query speed of data. In the end, through extracting the keywords in the demand information with TF-IDF method, we can conclude the inclination of users. Based on time and location information, we could also acquire some initial conclusions including the trend of demand information from users, the analysis of user behavior, hotspot analysis and the analysis of users' interest.
[1] 刘宇,朱仲英.位置信息服务(LBS)体系结构及其关键技术[J].微型电脑应用,2003,19(5):5-7.
[2] 李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276.
[3] 王少一,苏绣,蒋许锋.基于上下文感知的地理信息服务发现与匹配技术研究[J].地理信息世界,2012(1):72-75.
[4] Dey A K. Understanding and using context[J]. Personal and Ubiquitous Computing Journal, 2001,5(1):4-7.
[5] Román M, Hess C, Cerqueira R, et al. A middleware infrastructure to enable active spaces[J]. IEEE Pervasive Computing, 2002,1(4):74-83.
[6] Chou S C, Hsieh W T, Gandon F L, et al. Semantic web technologies for context-aware museum tour guide applications[C]. The 19th Int'l Conf on Advanced Information Networking and Applications, Taipei, China, 2005.
[7] Gandon F L, Sadeh N M. Semantic web technologies to reconcile privacy and context awareness[J]. Journal of Web Semantics, 2004,1(3):241-260.
[8] Korpipaa P, Hakkila J, Kela J, et al. Utilising context ontology in mobile device application personalisation[C]. MUM 2004, Colleage Park, Maryland, USA, 2004.
[9] Gu T, Pung H K, Zhang D Q. A middleware for building context-aware mobile services[C]. IEEE 59th Vehicular Technology Conference, Milan, Italy, 2004.
[10] 魏震方,王世华,沈华.位置服务上下文计算本体形式化实现方法[J].测绘科学,2010,35(1):146-148.
[11] 赵冬青.面向语义的位置服务研究[D].郑州:信息工程大学,2007.
[12] 刘芳,李春旺.基于上下文的个人信息管理研究[J].图书馆学研究,2010(19):50-54.
[13] Sheng Q Z, Benatallah B. Contextual: A UML-based modeling language for model driven development of context aware Web services[C]. The Int'l Conf on Mobile Business, Sydney, Australia, 2005.
[14] Van den Bergh J, Coninx K. Towards modeling context-sensitive interactive applications: The context-sensitive user interface profile (cup)[C]. The 2005 ACM Sympon Software Visualization, St. Louis, Missouri, 2005.
[15] Derntl M, Hummel K A. Modeling context-aware e-learning scenario[C]. The 3rd Int'l Conf on Pervasive Computing and Communications Workshops, Washington, DC,2005.
[16] Buchholz S, Hamann T, Hubsch G. Comprehensive structured context profiles (CSCP): Design and experiences[C]. The 2nd IEEE Annual Conf on Pervasive Computing and Communications Workshops, Orlando, Florida, 2004.
[17] Cerqueira R, Hess C, Roman M, et al. Gaia: A development infrastructure for active spaces[C]. Workshop on Application Models and Programning Tools for Ubiguitous Computing, Atlanta, Geogia, 2001.
[18] Khungar S, Riekki J. A context based storage system for mobile computing applications[J]. Mobile Computing and Communications Review, 2005,9(1):64-68.
[19] 田萱,李冬梅.上下文信息检索研究综述[J].计算机科学,2011,38(9):18-24.
[20] Zhang W, Yoshida T, Tang X J. A comparative study of TF IDF, LSI and multi-words for text classification[J]. Expert Systems with Applications, 2011(38):2758-2765.
[21] 张文鹏,王兴.基于中文关键词提取的预案智能匹配方案[J].科学技术与工程,2012,12(21):5192-5197.
/
〈 | 〉 |