遥感科学与应用技术

干旱区草原地上植被生物量估算——以乌图美仁大草原芦苇植被为例

展开
  • 电子科技大学资源与环境学院, 成都 611731
行敏锋(1982- ),男,博士生,研究方向为定量遥感。E-mail:xingminfeng@163.com

收稿日期: 2013-04-02

  修回日期: 2013-04-23

  网络出版日期: 2014-03-10

基金资助

中央高校基本科研业务费(ZYGX2012Z005)资助。

Estimation of Aboveground Biomass in Arid Region with ASAR Data and TM Data:A Case Study over the Reed Vegetation of Wutumeiren Prairie, Qinghai Province

Expand
  • School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China

Received date: 2013-04-02

  Revised date: 2013-04-23

  Online published: 2014-03-10

摘要

草原是干旱区生态系统中重要的可再生资源。本文基于草本植被的结构特征,利用ASAR和TM数据,结合MIMICS模型,提出了一种估算干旱区草原地上植被生物量的方法。该方法将光学遥感数据容易反演的叶面积指数(LAI)作为反演生物量模型的参数之一,并利用LAI成功估算了单位面积内的草本植被密度。将地上生物量作为输入变量代入改进的MIMICS模型,利用查找表方法,计算出地上植被生物量。然后,将该方法应用于乌图美仁草原的地上植被生物量的反演。结果表明,该方法能够成功地反演干旱区草原草本植被地上生物量,精度达到R2=0.8562,RMSD=0.6263。最后,分析了该方法估算植被生物量的误差来源。

本文引用格式

行敏锋, 何彬彬 . 干旱区草原地上植被生物量估算——以乌图美仁大草原芦苇植被为例[J]. 地球信息科学学报, 2014 , 16(2) : 335 -340 . DOI: 10.3724/SP.J.1047.2014.00335

Abstract

Grasslands are important renewable resources in ecosystems of arid areas. As one of the important components of prairie ecosystems, aboveground biomass is the key indicator of health status of the prairie ecosystems. Comparing to the significant limitations of the traditional method of biomass, the satellite remote sensing provides a unique effective and efficient means in biomass monitoring and assessment. In this paper, we proposed a retrieval methodology for herbaceous vegetation biomass based on the vegetation structure characteristic and Michigan Microwave Canopy Scattering (MIMICS) model using the ASAR and TM data. A two-layer canopy reflectance model (ACRM) was used to inverse the Leaf Area Index (LAI) which can be easily retrieved from the optical remote sensing data. Then LAI was used to get the number of plants per unit area. The aboveground biomass served as an input parameter was input into the adaption of MIMICS model which adopted for characterizing the backscatter from herbaceous vegetation by deleting the scatter component associated with ground-trunks. Then, based on established equations which used the dual-polarized radar data, the aboveground biomass was calculated using the lookup table. The method was applied to retrieve the biomass of Wutumeiren prairie, Qinghai Province. Results indicated that the method was of the operational potential in aboveground biomass of the herbaceous vegetation in arid region. And a good accuracy of the biomass retrieval was achieved (R2=0.8562, RMSD=0.6263). Finally, we analyzed the error sources of biomass estimation using this method. The sources of error might be come from two aspects, i.e. error of the input model parameters, and the ill-posed inversion problem, for which, the mean value was used as the inverse results when the solution is not unique.

参考文献

[1] Santos J R, Freitas C C, Araujo L S, et al. Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest[J]. Remote Sensing of Environment, 2003,87(4):482-493.

[2] Steininger M. Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia[J]. International Journal of Remote Sensing, 2000,21(6-7):1139-1157.

[3] 王庆,廖静娟.基于Landsat TM和ENVISAT ASAR数据的鄱阳湖湿地植被生物量的反演[J].地球信息科学学报,2010,12(2):282-291.

[4] Svoray T, Shoshany M. SAR-based estimation of areal aboveground biomass (AAB) of herbaceous vegetation in the semi-arid zone: A modification of the water-cloud model[J]. International Journal of Remote Sensing, 2002,23(19):4089-4100.

[5] 施建成,杜阳,杜今阳,等.微波遥感地表参数反演进展[J].中国科学:地球科学,2012(6):814-842.

[6] Wang H, Ouchi K. A simple moment method of forest biomass estimation from non-gaussian texture information by high-resolution polarimetric SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2010,7(4):811-815.

[7] Hoekman D H, Quiñones M J. Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colobian Amazon[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000(38):685-696.

[8] 黎夏,叶嘉安,王树功,等.红树林湿地植被生物量的雷达遥感估算[J].遥感学报,2006,10(3):387-396.

[9] Inoue Y, Kurosu T, Maeno H, et al. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables[J]. Remote Sensing of Environment, 2002,81(2):194-204.

[10] Prasad R. Retrieval of crop variables with field-based X-band microwave remote sensing of ladyfinger[J]. Advances in Space Research, 2009,43(9):1356-1363.

[11] Taconet O, Benallegue M, Vidal-Madjar D. Estimation of soil and crop parameters for wheat from airborne radar backscattering data in C and X band[J]. Remote Sensing of Environment, 1994(50):287-294.

[12] Stephen L D, Leslie A M, Gerald P L. Microwave backscatter and attenuation dependence on leaf area index for flooded rice fields[J]. IEEE Transaction on Geoscience and Remote Sensing, 1995,33(3):807-810.

[13] Moreau S, Toan T L. Biomass quantification of Andean wetland forages using ERS satellite SAR data for optimizing live stock management[J]. Remote Sensing of Environment, 2003(84):477-492.

[14] Hill M J, Donald G E, Vickery P J. Relating radar backscatter to biophysical properties of temperate perennial grassland[J]. Remote Sensing of Environment, 1999(67):15-31.

[15] Lopes A, Touzi R, Nezry E.Adaptive speckle filters and scene heterogeneity[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990,28(6):992-1000.

[16] Vermote E F, Tanré D, Deuze J L, et al. Second simulation of the satellite signal in the solar spectrum, 6S: An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35(3):675-686.

[17] Ulaby F T, Sarabandi K, McDonald K, et al. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990,11(7):1223-1253.

[18] Roo R D De, Du Y, Ulaby F T, et al. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(4):864-872.

[19] He B, Quan X, Xing M. Retrieval of leaf area index in alpine wetlands using a two-layer canopy reflectance model[J]. International Journal of Applied Earth Observation and Geoinformation, 2013(21):78-91.

[20] Imhoff M L. Radar backscatter and biomass saturation: ramifications for global biomass inventory[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995,33(2):511-518.

文章导航

/