地球信息科学理论与方法

基于拓扑与形态特征的城市道路交通状态空间自相关分析

展开
  • 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室, 北京100101
刘康(1991- ),女,山东临沂人,博士生,研究方向为交通GIS、复杂网络分析。E-mail:liukang@lreis.ac.cn

收稿日期: 2014-03-03

  修回日期: 2014-04-15

  网络出版日期: 2014-05-10

基金资助

国家自然科学基金项目(41271408);国家“863”计划项目(2012AA12A211);中国博士后科学基金(2013M541024)。

Spatial Autocorrelation Analysis of Urban Road Traffic Based on Topological and Geometric Properties

Expand
  • State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2014-03-03

  Revised date: 2014-04-15

  Online published: 2014-05-10

摘要

城市道路交通状态具有空间自相关特征。某一道路交通状态的变化会对其周边道路产生影响,故把握道路交通状态的空间自相关性是提高交通规划、交通预测水平的基础。然而,城市道路交通状态又具有空间异质性,即道路交通状态的影响扩散并非各向同性,其使得道路交通状态空间自相关性的度量更为复杂,因此仅从地理空间下道路之间的邻近关系出发进行分析有失偏颇。同时,城市道路具有拓扑结构特征和几何形态特征,二者对于交通状态自相关性的影响和制约,却未引起足够重视。本文从城市道路的拓扑结构特征和几何形态特征出发,提出了一种新的交通状态空间自相关路段识别规则,即基于交通状态变化的路段空间识别规则,通过拓扑社区发现方法刻画路段在空间上的聚集特征,同时,基于Stroke跟踪的几何形态概化来描述道路交通状态变化影响的空间异质性。结果表明,利用本文提出的识别规则产生的交通状态自相关路段集合,较仅考虑地理空间邻近或拓扑结构的识别规则更为合理,更好地揭示了城市道路交通状态的空间自相关特征。

本文引用格式

刘康, 段滢滢, 陆锋 . 基于拓扑与形态特征的城市道路交通状态空间自相关分析[J]. 地球信息科学学报, 2014 , 16(3) : 390 -395 . DOI: 10.3724/SP.J.1047.2014.00390

Abstract

Urban road traffic is spatially autocorrelated. The change of the traffic on a certain road will alter the surrounding roads' traffic status. Understanding the spatial autocorrelation of road traffic is essential for traffic planning and traffic prediction. However, unban road traffic is heterogeneous in spatial, which means that the traffic interactions between neighboring roads are not always isotropy. The spatial heterogeneity of urban traffic makes the measurement of spatial autocorrelation more complex, thus only uses spatial adjacency to define the traffic autocorrelated roads cannot well reveal the characteristics of spatial autocorrelation in urban road traffic. It is worth mentioning that urban roads have topological and geometric properties, which are neglected in the previous research. The aim of our research is to analyze the spatial autocorrelation of urban road traffic based on the topological and geometric properties of urban roads. We first investigated the spatial clustering characteristics of urban roads using community detection algorithm, and then depicted the spatial heterogeneity of the traffic interaction by measuring the importance of road segments with the use of the roads' generalized geometric forms. Based on those analyses, we proposed a novel approach to cluster together the roads whose traffic is spatially autocorrelated. Experiment results for the road network of Beijing indicate that the proposed approach performs better than the approaches that only consider the spatial adjacency or topological structure, which further implies that our approach can capture the spatial autocorrelation characteristics of urban road traffic more reasonably.

参考文献

[1] Elhorst J P. Specification and estimation of spatial panel data models[J]. International regional science review, 2003,26(3):244-268.
[2] Cheng T, Haworth J, Wang J. Spatio-temporal autocorrelation of road network data[J]. Journal of Geographical Systems, 2012,14(4):389-413.
[3] Min X, Hu J, Zhang Z. Urban traffic network modeling and short-term traffic flow forecasting based on GSTARIMA model[C]. Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, 2010,1535-1540.
[4] Ding Q Y, Wang X F, Zhang X Y, et al. Forecasting traffic volume with space-time ARIMA model[J]. Advanced Materials Research, 2011(156):979-983.
[5] 段滢滢,陆锋.基于道路结构特征识别的城市交通状态空间自相关分析[J].地球信息科学学报, 2012,14(6):768-774
[6] Jiang B. Street hierarchies: a minority of streets account for a majority of traffic flow[J]. International Journal of Geographical Information Science, 2009,23(8):1033-1048.
[7] 周涛,柏文洁,汪秉宏,等.复杂网络研究概述[J].物理, 2005,34(1):31-36.
[8] Girvan M, Newman M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821-7826.
[9] Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical review E, 2004,69(6): 066133.
[10] Fell D A, Wagner A. The small world of metabolism[J]. Nature biotechnology, 2000,18(11):1121-1122.
[11] Raghavan U N, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007,76(3):036106.
[12] 周亮,陆锋,张恒才.基于动态中介中心性的城市道路网实时分层方法[J].地球信息科学学报,2012,14(3):292-298
[13] 徐柱,刘彩凤,张红,等.基于路划网络功能评价的道路选取方法[J].测绘学报,2012,41(5):769-776.
[14] Thomson R C, Richardson D E. The‘Good Continuation' principle of perceptual organization applied to the generalization of road networks[C]. Proceedings of 19th International Cartographic Conference, 1999,1215-1223.
[15] 栾学晨,杨必胜,张云菲.城市道路复杂网络结构化等级分析[J].武汉大学学报:信息科学版,2012,37(6):728-732.
[16] 刘刚,李永树,杨骏,等.对偶图节点重要度的道路网自动选取方法[J].测绘学报,2014,43(1):97-104.
[17] Yang B, Luan X, Li Q. Generating hierarchical strokes from urban street networks based on spatial pattern recognition[J]. International Journal of Geographical Information Science, 2011,25(12):2025-2050.
[18] Jiang B, Zhao S,Yin J. Self-organized natural roads for predicting traffic flow: a sensitivity study[J]. Journal of statistical mechanics: Theory and experiment, 2008(7):P07008.
[19] 蔡元龙.模式识别[M].西安:西北电讯工程学院出版社, 1986,23-26.

文章导航

/