基于土地利用类型的村级人口空间分布模拟——以湖北鹤峰县为例
收稿日期: 2013-12-11
修回日期: 2014-02-19
网络出版日期: 2014-05-10
基金资助
国家自然科学基金项目(41371375);北京市自然科学基金项目(8132018);“十二五”国家科技支撑计划项目(2012BAH33B03、2012BAH33B05)。
Simulation of Village-Level Population Distribution Based on Land Use: A Case Study of Hefeng County in Hubei Province
Received date: 2013-12-11
Revised date: 2014-02-19
Online published: 2014-05-10
在人口分布及其相关研究中,常常会遇到小尺度人口数据部分缺失的问题。本文以湖北省鹤峰县为例,在分析土地利用与人口分布关系的基础上,从全局与局部、线性回归与非线性回归考虑,基于土地利用类型,分别利用地理加权回归(GWR)方法、格网方法、BP神经网络方法对缺失数据的行政村人口数据进行模拟,并进行了多角度精度对比验证。研究结果表明:(1)各种土地利用类型中,耕地、林地、城镇村及工矿用地、交通用地是影响研究区村级人口分布的主要因素;(2)30个调查村中,3种方法模拟的人口总数误差小于3%,通过每个村的模拟值与实际值相比,BP神经网络方法能更好地模拟研究区村级人口的分布,格网方法次之,GWR方法最差;(3)研究区各村人口分布呈现较高的空间正相关性,各乡镇的人口密度在空间上并不独立,而是呈现紧密的集聚特征。
张建辰, 王艳慧 . 基于土地利用类型的村级人口空间分布模拟——以湖北鹤峰县为例[J]. 地球信息科学学报, 2014 , 16(3) : 435 -442 . DOI: 10.3724/SP.J.1047.2014.00435
The problem that population data is usually missing in small scale areas such as administrative villages which are always mentioned in population distribution studies and related researches. In this context, we took the Hefeng County in Hubei Province as the study area and analyzed the correlation between land use type index and population density. The simulation of the village-level population distribution is performed using Geographically Weighted Regression (GWR) method, grid method and BP neural network method respectively. Then, from the perspective of global-local and linear-nonlinear, the comparative precision validation was taken to verify the simulation accuracy of the population in villages with missing population data, which utilizes cross-validation method between the simulated population and the actual population. Results show that: (1) in all kinds of land use types, the main factors affecting population distribution are farmland, woodland, urban industrial land, and transportation land;(2) with regard to the three simulation methods we concerned, the errors of the simulated total population using these methods are all less than 3% for the 30 invested villages. By comparing the ratios of estimated values to the actual values of population in each village, and taking 10% as the tolerance, the reliability of GWR method is 43.33%, while grid method is 76.67% and BP neural network is 86.67 %. It shows that the BP neural network method is the optimal method among the three methods for the study area, and grid method is better than GWR method. In addition, the prediction accuracy of nonlinear regression is higher than that of linear regression;(3) population spatial distribution in the study area shows a high spatial positive correlation and a "high–high"agglomeration type which is also the main type in the study area;moreover, it shows that the population densities of the county are not spatially independent but intensively agglomerated.
[1] 田永中,陈述彭,岳天祥,等.基于土地利用的中国人口密度模拟[J].地理学报,2004,59(2):25-33.
[2] Kim H,YaoXB. Pycnophylactic interpolation revisited: Integration with the dasymetric mapping method[J]. International Journal of Remote Sensing, 2010,31(21):5657-5671.
[3] Langford M. Obtaining population estimates in non-census reporting zones: An evaluation of the 3-class dasymetric method[J]. Computers, Environment and Urban Systems, 2006,30(2):161-180.
[4] 林丽洁,林广发,颜小霞,等.人口统计数据空间化模型综述[J].亚热带资源与环境学报,2010,5(4):10-18.
[5] 图雅,巴图德力格尔,阿拉腾图雅,等.人口分布空间化方法对比研究[J].阴山学刊,2012,26(3):45-49.
[6] 柏中强,王卷乐,杨飞.人口数据空间化研究综述[J].地理科学进展,2013,32(11):1692-1702.
[7] Liu X H, Kyriakidis P C, Goodchild M F. Population-density estimation using regression and area-to-point residual kriging[J]. International Journal of Geographical Information Science, 2008,22(4):431-447.
[8] Su M D, Lin M C, Hsieh H I, et al. Multi-layer multi-class dasymetric mapping to estimate population to estimate population distribution[J]. Science of the Total Environment, 2010,408(20):4807-4816.
[9] Freire S M C. Modeling daytime and nighttime population distribution in Portugal using geographic information systems[D]. Kansas: Department of Geography, University of Kansas, 2007.
[10] Lo C P. Population estimation using geographically weighted regression[J]. GIScience & Remote Sensing, 2008,45(2):131-148.
[11] 廖顺宝,孙九林.基于GIS 的青藏高原人口统计数据空间化[J].地理学报,2003,58(1):25-33.
[12] 叶靖,杨小唤,江东.乡镇级人口统计数据空间化的格网尺度效应分析——以义乌市为例[J].地球信息科学学报,2010,12(1):41-47.
[13] 周小平,王志伟,张学通,等.人口分布空间插值及其在农牧交错带中的应用[J].草业科学,2010,27(6):143-152.
[14] 贾楠,胡红萍,白艳萍.基于BP神经网络的人口预测[J].山东理工大学学报(自然科学版),2011,25(3):22-24.
[15] 张锦宗,朱瑜馨,周杰.基于BP网络与空间统计分析的山东人口空间分布模式预测研究[J].测绘科学,2009,34(6): 162-164.
[16] 刘玉卿,徐中民.基于IPAT 模型识别的人文因素空间化方法研究[J].冰川冻土,2012,34(3):740-747.
[17] 焦文献,徐忠民.人文因素作用集成模拟模型国际研究进展[J].冰川冻土,2010,32(2):438-443.
[18] Brunsdon C, Fothering A S, Charlton M. Geographically weighted regression: A method for exploring spatial non-stationarity[J]. International Journal of Geographical Information systems, 1996,28(4):281-298.
[19] Fotheringham A S, Brunsdon C, Charlton M E. Geographically weighted regression: The analysis of spatially varying relationships[M]. West Sussex: John Wiley & Sons Ltd, 2002.
[20] 闫庆武,卞正富,张萍,等.基于居民点密度的人口密度空间化[J].地理与地理信息科学,2011,27(5):95-98.
[21] 黄河清,王有亮,胡宝清,等.基于神经网络和GIS的广西都安县人口数据空间化研究[J].测绘与空间地理信息, 2009,32(6):46-49.
/
〈 | 〉 |