基于空间插值的风场模拟方法比较分析
作者简介:董志南(1987-),男,河北邯郸人,硕士生,主要从事数字城市环境管理方面的研究。E-mail:zndong@iue.ac.cn
收稿日期: 2013-10-30
要求修回日期: 2013-12-11
网络出版日期: 2015-01-05
基金资助
中国科学院知识创新工程重要方向项目“数字城市环境网络建设与示范”(KZCX2-YW-453)
国家自然科学基金青年科学基金项目(41301167)
Comparative Analysis of Methods of Wind Field Simulation Based on Spatial Interpolation
Received date: 2013-10-30
Request revised date: 2013-12-11
Online published: 2015-01-05
Copyright
计算流体动力学方法是目前风场空间格局模拟的主要方法之一,该方法由于受到软硬件局限,多应用于小尺度的风场模拟及分析。该方法精确程度极大地依赖于3D建模的精细程度和迭代计算模型的准确程度,与现实风场的发育过程存在明显差异。而随着物联网技术的发展,我们可通过大量的现场传感器进行风场数据的实时采集,为风场动态实时化模拟提供精确的参数。为了确定风场动态实时化模拟的最佳方法,本文以中国科学院城市环境研究所园区内32个风场传感器的月平均风速数据为研究案例,综合分析了反距离权重插值、全局多项式插值、局域多项式插值、径向基函数插值、最近邻域法插值、普通克里格插值6种空间插值方法,并采用交叉验证的方法对插值结果进行比较。结果表明,反距离权重插值在模拟的误差范围、模拟的准确度、反映极值的能力上优于其他5种方法,为1:500尺度的风场空间格局模拟提供了参考。
董志南 , 郑拴宁 , 赵会兵 , 董仁才 . 基于空间插值的风场模拟方法比较分析[J]. 地球信息科学学报, 2015 , 17(1) : 37 -44 . DOI: 10.3724/SP.J.1047.2015.00037
The computational fluid dynamics (CFD) method is one of the major ways of wind fields patial pattern simulation at present. This method is more often applied to wind field simulations and analyses on small scales because of the limitations of the hardware and software. Meanwhile, the precision and accuracy of this method depends on the precision of 3D building model sand the accuracy of iterated computation models, and there are significant differences existing between the simulation results and the real wind field situation. With the development of Internet of Things (IoT) technology, we can provide precise parameters to real-time simulation of regional wind fields pace distribution, by using a large number of real-time field sensor nodes. Spatial interpolation can be used to simulate the spatial distribution of all the regional environment factors. In order to determine the optimal method for real-time wind fields imulation, this research took the monthly average wind speed data of November, 2011, which are collected from 32 wind speed sensors in Institute of Urban Environment, CAS, as the example. Then, we make a comprehensive analysis of Inverse Distance Weight method, Global Polynomial method, Local Polynomial method, Radial Basis Function method, Nearest Neighbor method and Ordinary Kriging method, and compare the results of the six different methods by Cross-Validation. The result shows that the Inverse Distance Weight method is better than the other methods in the simulation error range, the simulation accuracy and the ability to reflect extreme value, which provides a reference for wind field simulation on small scales.
Key words: wind field; Internet of Things; spatial interpolation
Fig. 1 Spatial distribution map of wind speed monitoring stations in Institute of Urban Environment, CAS图1 中国科学院城市环境研究所风环境监测站点分布图 |
Tab. 1 Types of spatial interpolation methods表1 空间插值方法分类 |
确定性插值 | 地统计插值 | |
---|---|---|
全局性插值 | 局部性插值 | |
全局多项式插值 | 反距离权重插值 | 普通克里格插值 |
最近邻域法插值 | 简单克里格插值 | |
径向基函数法插值 | 泛克里格插值 | |
局域多项式插值 | 概率克里格插值 | |
析取克里格插值 | ||
协同克里格插值 |
Fig. 2 Filled contour map of the interpolation results of monthly wind speed field (November, 2011)图2 2011年11月风速场空间插值结果 |
Tab. 2 The results of Cross-Validation error of the six interpolation methods (m/s)表2 6种插值方法的整体插值误差指标(m/s) |
插值方法 | MAE | MRE | RMSE |
---|---|---|---|
IDW | 1.454 | 2.168 | 2.272 |
GP | 1.590 | 2.799 | 2.217 |
LP | 1.652 | 2.947 | 2.318 |
RBF | 1.891 | 3.795 | 2.639 |
NN | 1.492 | 2.191 | 2.367 |
OK | 1.684 | 2.488 | 2.674 |
Tab. 3 Observed value, correlation coefficient and the six interpolation methods (m/s, no units for correlation coefficient)表3 6种插值方法的结果与观测值的比较 |
数据项 | Max(m/s) | Min(m/s) | Mean(m/s) | Range(m/s) | Sd(m/s) | 相关系数 |
---|---|---|---|---|---|---|
观测值 | 8.059 | 0.200 | 0.986 | 7.859 | 1.969 | 1 |
IDW | 7.496 | 0.188 | 0.953 | 7.308 | 1.873 | 0.802 |
GP | 3.416 | 0.051 | 1.095 | 3.366 | 1.660 | 0.792 |
LP | 4.066 | 0.134 | 1.419 | 3.933 | 1.525 | 0.564 |
RBF | 6.065 | 0.179 | 0.822 | 5.886 | 1.773 | 0.828 |
NN | 7.171 | 0.192 | 0.933 | 6.949 | 1.727 | 0.804 |
OK | 6.417 | 0.013 | 1.395 | 6.404 | 1.836 | 0.136 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
ESRI.Inc. Geostatistical Analyst快速浏览[EB/OL].
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
/
〈 | 〉 |