城市三维重心算法与实验分析——以南京市为例
作者简介:乔伟峰(1975-),男,江苏徐州人,博士,讲师,主要从事土地遥感和GIS应用研究。E-mail:qwf@263.net
收稿日期: 2014-07-10
要求修回日期: 2014-08-06
网络出版日期: 2015-03-10
基金资助
国家自然科学基金项目(41371172、41130748、41471143)
中国博士后科学基金项目(2014M561040)
教育部人文科学研究青年基金项目(11YJC840051)
江苏高校优势学科建设工程资助项目(164320H101)
Three-dimensional Urban Gravity Center Calculation Method and Empirical Research: A Case Study of Nanjing
Received date: 2014-07-10
Request revised date: 2014-08-06
Online published: 2015-03-10
Copyright
当前对城市重心的研究多以城市平面形态的二维重心进行求解,在城市垂向伸展日益显著的背景下,有必要对城市的三维重心进行变化分析。针对二维平面重心求取方法的深入分析,本文推导了一种由城市建筑高度等值线计算城市实体三维重心的方法,将城市三维实体看作由一层层“薄板”搭建成的组合体,利用组合体的重心计算公式求取城市三维重心。以南京市为例进行了验证,将所求得的城市二维重心和三维重心的转移结果进行了比较分析。结果表明,该计算方法可方便地计算城市实体的三维重心,南京城市三维重心的投影虽然和二维重心有相似的变化特点和规律,但存在一定程度的偏移,偏移方向与高层建筑密集区域相对应。城市三维重心充分考虑到城市垂直方向上的伸展,可有效更全面地反映城市空间变化的规律和特点。
乔伟峰 , 刘彦随 , 王亚华 , 项灵志 . 城市三维重心算法与实验分析——以南京市为例[J]. 地球信息科学学报, 2015 , 17(3) : 268 -273 . DOI: 10.3724/SP.J.1047.2015.00268
The current studies on urban gravity center mainly focus on two-dimensional urban gravity center that based on the planar form. Now the trend of urban vertical expansion is more and more distinctive, it is necessary to research the calculation method and analyze the variation of three-dimensional urban gravity center. Based on the analysis of the calculation method of two-dimensional gravity center, this paper deduces a new method to calculate the three-dimensional urban gravity center. It takes three-dimensional urban space as a combination that is formed by multiple stacked layers of ‘sheet’, and uses the mathematical formula of this combination’s gravity center to calculate the three-dimensional urban gravity center. Taking Nanjing as an experimental area for validation, we calculate the two-dimensional and three-dimensional urban gravity centers respectively and contrasts their changing trails. The result shows that the method proposed in this paper is easy to obtain urban entity’s three-dimensional gravity center. Also, the position of the three-dimensional urban gravity center obtained in this way is correct. Through the analysis of the variation law of the two-dimensional and the three-dimensional urban gravity centers in Nanjing, the projections of the two gravity centers have similar changing characteristics and regularities, but a certain degree of deviation between the two trails. The direction of deviation evidently corresponds to the dense regions of high-rise buildings. Taking full account of the urban expansion in the vertical direction, the three-dimensional urban gravity center provides an effective way in reflecting the characteristics and regularities of urban spatial change.
Key words: urban space; three-dimensional gravity center; calculation method; Nanjing
Fig. 1 Flowchart of extraction technique of the three-dimensional urban gravity center图1 城市三维重心提取技术路线图 |
Fig. 2 The spatial gravity center of plane geographic object图2 平面地理对象的空间重心 |
Fig. 3 The schematic diagram of three-dimensional urban gravity center calculated from building height contours图3 建筑高度等值线城市三维重心计算原理示意图 |
Tab. 1 The shift direction and distance of the two-dimensional gravity center表1 二维平面重心转移方向与距离 |
年份 | 平面重心位置 | 移动距离(m) | 转移方向(°) | 扩张方向 |
---|---|---|---|---|
1980 | 鼓楼广场北侧 | |||
1990 | 火车站西侧 | 2751 | 73.04 | NE |
2000 | 北极阁公园北侧 | 2625 | 276.32 | SE |
2004 | 华山饭店西侧 | 1599 | 303.69 | SE |
2008 | 西安门 | 1291 | 281.86 | SE |
2012 | 新街口东侧 | 1564 | 186.10 | SW |
Fig. 4 The three-dimensional sketch of building height contours in Nanjing in 2012图4 2012年南京市建筑高度等值线三维示意图 |
Fig. 5 The change of three-dimensional center in Nanjing图5 南京市三维重心变化 |
Tab. 2 The shift direction and distance of three-dimensional gravity center表2 三维重心转移方向与距离 |
年份 | 三维重心在平面的投影位置 | 三维重心的高度(m) | 平面投影点转移距离(m) | 平面投影点转移方向(°) | 三维重心扩张方向 |
---|---|---|---|---|---|
2000 | 鼓楼广场东侧 | 2.40 | |||
2004 | 大行宫 | 2.47 | 2041 | 291.93 | SE |
2008 | 西安门南侧 | 2.45 | 863 | 303.06 | SE |
2012 | 新街口南侧 | 2.51 | 1637 | 182.97 | SW |
Fig. 6 Comparison between the two-dimensional and three-dimensional gravity centers in Nanjing图6 南京市的二、三维重心变化对比图 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
/
〈 | 〉 |