本期要文(可全文下载)

利用MapReduce的异常轨迹检测并行算法

展开
  • 南京师范大学计算机科学与技术学院, 南京210023
唐梦梦(1990-),女,硕士生,研究方向为数据挖掘及其应用。E-mail:dreamtang1016@163.com

收稿日期: 2014-11-13

  修回日期: 2014-12-11

  网络出版日期: 2015-05-10

基金资助

国家自然科学基金项目"云计算环境下顾及用户关系的手机用户时空轨迹模式挖掘方法研究"(41471371)。

A Parallel Algorithm for Detecting Trajectory Outliers Based on MapReduce

Expand
  • School of Computer Science and Technology, Nanjing Normal University, Nanjing 210023, China

Received date: 2014-11-13

  Revised date: 2014-12-11

  Online published: 2015-05-10

摘要

异常轨迹检测是移动对象数据挖掘的一个重要研究领域。TRAOD(TRAjectory Outlier Dectection Algorithm)算法是一种经典的异常轨迹检测算法,但它对于海量轨迹数据的异常检测效率低。为提高海量轨迹数据集的异常检测效率,本文提出了一种利用MapReduce 的异常轨迹检测并行算法(Parallel algorithm for TRAjectory Outlier Detection, PTRAOD),并在此基础上提出了网格索引的异常轨迹检测并行算法(Grid-based Parallel algorithmfor TRAjectory Outlier Dectection, GPTRAOD)。GPTRAOD算法在PTRAOD算法的基础上,利用网格索引实现区域查询,进一步提高算法效率。将PTRAOD算法和GPTRAOD算法在Hadoop 平台上加以实现,结果表明:本文提出的2 个并行检测算法,能实现异常轨迹的检测;GPTRAOD算法的效率优于PTRAOD算法;GPTRAOD算法具有较高的可扩展性和较好的加速比。

本文引用格式

唐梦梦, 吉根林, 赵斌 . 利用MapReduce的异常轨迹检测并行算法[J]. 地球信息科学学报, 2015 , 17(5) : 523 -530 . DOI: 10.3724/SP.J.1047.2015.00523

Abstract

Trajectory outlier detection is significantly important in the field of data mining for moving object. TRAOD (TRAjectory Outlier Dectection Algorithm), a classic algorithm for detecting trajectory outliers, focuses on a new two-level trajectory partitioning strategy to enhance the efficiency of algorithm. The main advantage of TRAOD algorithm is the ability to detect outlying sub-trajectories. However, it has a low efficiency on abnormality detection for massive trajectory data. In order to improve the efficiency for mining trajectory outliers from massive datasets, a parallel algorithm for detecting trajectory outliers based on MapReduce framework, which is called PTRAOD (Parallel algorithm for TRAjectory Outlier Detection), is presented. It redesigns the TRAOD algorithm based on the MapReduce framework, and encapsulates the steps of TRAOD into its Map and Reduce functions. PTRAOD algorithm takes full advantages of the features from Hadoop platform. It firstly distributes the trajectory data into distributed computing nodes. While distributing the data, it also takes the load-balance into consideration. And after all, each node runs the same algorithms to detect abnormal trajectories. Based on PTRAOD algorithm, a grid-based parallel algorithm for detecting trajectory outliers, called GPTRAOD (Gridbased Parallel algorithm for TRAjectory Outlier Detection), is then proposed. GPTRAOD algorithm makes use of the grid index to realize regional query and reduce unnecessary calculations. At first, GPTRAOD algorithm divides the map into a series of equal- sized grids, whose size is determined with respect to each specific data. Then, the grid index is established to implement the regional query. Finally, the algorithm finds out the abnormal trajectory segments and judges whether the trajectories that contains the abnormal trajectory segments are abnormal. In general, GPTRAOD algorithm takes advantages of the gird index to realize regional query on the basis of PTRAOD algorithm, which furthermore can search abnormal trajectory on the cloud computing platform. To assess the performances of the proposed algorithms, extensive experiments were conducted. The experimental results demonstrate that the proposed two parallel detection algorithms can both successfully achieve the trajectory outlier detection. The efficiency of PTRAOD algorithm is higher than TRAOD algorithm, while GPTRAOD algorithm has the higher scalability and better speedup ratio than PTRAOD algorithm. In addition, with the rapidly expanding of datasets, GPTRAOD algorithm shows obvious advantages and increasing potentials.

参考文献

[1] Liao L, Patterson D J, Fox D, et al. Learning and inferring transportation routines[J]. Artificial Intelligence, 2007,171(5):311-331.
[2] Yuan J, Zheng Y, Zhang C, et al. T-drive: Driving directions based on taxi trajectories[C]. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2010:99-108.
[3] Giannotti F, Nanni M, Pinelli F, et al. Trajectory pattern mining[C]. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2007:330-339.
[4] Yu Y, Cao L, Rundensteiner E A, et al. Detecting moving object outliers in massive-scale trajectory streams[C]. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014:422-431.
[5] Li X, Li Z, Han J, et al. Temporal outlier detection in vehicle traffic data[C]. In: Proceedings of the 25th International Conference on Data Engineering. Washington: IEEE Computer Society, 2009:1319-1322.
[6] Ge Y, Xiong H, Liu C, et al. A taxi driving fraud detection system[C]. 2011 IEEE 11th International Conference on Data Mining (ICDM), 2011:181-190.
[7] Barnett V, Lewis T. Outliers in statistical data[M]. New York:Wiley, 1994.
[8] Knorr E M, Ng R T. Finding intentional knowledge of distance-based outliers[C]. In: Proceedings of the 25th International Conference on Very Large Data Bases. Edinburgh, Scotland: Springer-Verlag, 1999,99:211-222.
[9] Breunig M M, Kriegel H P, Ng R T, et al. LOF: Identifying density-based local outliers[C]. In: Proceedings of 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2000,29(2):93-104.
[10] Aggarwal C C, Yu P S. Outlier detection for high dimensional data[C]. In: Proceedings of 2001 ACM SIGMOD International Conference on Management of Data. California: ACM, 2001,30(2):37-46.
[11] 姜金凤.移动对象轨道异常检测算法的研究[D].南京:南 京航空航天大学,2010:1-19.
[12] Knorr E M, Ng R T, Tucakov V. Distance-based outliers: algorithms and applications[J]. The VLDB Journal¾The International Journal on Very Large Data Bases, 2000,8(3-4):237-253.
[13] Li X, Han J, Kim S, et al. ROAM: Rule-and motif-based anomaly detection in massive moving object data sets[C]. In: Proceedings of the SIAM International Conference on Data Mining. Minneapolis. Minnesota: SIAM, 2007,7: 273-284.
[14] 刘良旭,乔少杰,刘宾,等.基于R-Tree 的高效异常轨迹检 测算法[J].软件学报,2009,20(9):2426-2435.
[15] Lee J G, Han J, Li X. Trajectory outlier detection: A partition-and-detect framework[C]. In: Proceedings of the 24th International Conference on Data Engineering. Washington: IEEE Computer Society, 2008:140-149.
[16] Liu L, Fan J, Qiao S, et al. Efficiently mining outliers from trajectories of unrestraint movement[C]. In: Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering, 2010,2:V2-261-V2-265.
[17] Isaksson C, Dunham M H. A comparative study of outlier detection algorithms[M]. In: Machine Learning and Data Mining in Pattern Recognition. Berlin: Springer Berlin Heidelberg, 2009:440-453.
[18] Armbrust M, Fox A, Griffith R, et al. A view of cloud computing[J]. Communications of the ACM, 2010,53(4): 50-58.
[19] Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters[J]. Communications of the ACM, 2008,51(1):107-113.
[20] Dean J, Ghemawat S. MapReduce: A flexible data processing tool[J]. Communications of the ACM, 2010,53(1): 72-77.
[21] Lee J G, Han J, Whang K Y. Trajectory clustering: A partition-and-group framework[C]. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, 2007:593-604.
[22] UNISYS. The Atlantic hurricane database[EB/OL]. [2014-9-10]. http://weather.unisys.com/hurricane/atlantic/.

文章导航

/