全球六边形离散格网的矢量线数据绘制精度控制
作者简介:于文率(1981-),男,辽宁沈阳人,博士,讲师,主要从事计算视觉多视几何、全球离散格网系统等方面的研究。E-mail: ws_yu@aliyun.com
收稿日期: 2014-12-31
要求修回日期: 2015-03-26
网络出版日期: 2015-07-08
基金资助
国家自然科学基金项目(41201392、41271391、40930104)
中国博士后科学基金项目(2013M542456)
The Accuracy Control in the Process of Vector Line Data Drawing in the Hexagon Discrete Global Grid System
Received date: 2014-12-31
Request revised date: 2015-03-26
Online published: 2015-07-08
Copyright
全球离散格网系统是一种新型的地球空间数据模型,是平面格网模型在球面上的扩展。由于六边形的几何结构优势,经常被用于球面离散格网的构建。在平面格网向球面映射过程中,因球面的不可展性,格网上的距离和方向都会发生巨大变化,导致矢量数据球面格网化绘制的精度无法得到保证,这成为矢量数据在全球离散格网显示的一个重要瓶颈,直接制约了球面格网上空间度量关系的建立。本文针对全球六边形离散格网上矢量线数据的绘制问题,研究了平面-球面映射过程,对直线方向影响的统计变化规律,对矢量线数据的格网化表达进行了精度控制,使得平面格网上的矢量绘制方法,能在球面格网上进行高精度的绘制,并保证矢量数据的球面格网绘制误差严格控制在当前层次格网的一个单元内,为格网化数据的高精度显示和格网空间度量的建立奠定了理论基础。
于文率 , 童晓冲 , 贲进 , 谢金华 . 全球六边形离散格网的矢量线数据绘制精度控制[J]. 地球信息科学学报, 2015 , 17(7) : 804 -809 . DOI: 10.3724/SP.J.1047.2015.00804
The Discrete Global Grid System (DGGS) is a new type of global spatial data model and is the extension of the plane grid on a sphere. Hexagon is usually used in the construction of DGGS for its advantageous geometric structure. Since sphere is unextended, in the process of plane grid mapping, the distance and direction of the grid will change greatly. As a result, the accuracy of drawing vector data in the global grid cannot be guaranteed. This has been a critical choke point for the display of vector data in DGGS and has directly restricted the establishment of spatial measurement relationship on a spherical grid. In order to solve the drawing problems of vector line data in hexagon DGGS, this paper has studied the distortion regularity that the plane-sphere mapping process affects the linear direction, and control the accuracy of vector line data grid transformation. As a result, the vector drawing method on a plane grid can also be adopted to deal with high-accuracy drawing on a spherical grid, and it guarantees that the spherical grid drawing errors of the vector data can be controlled strictly in one cell of the current layer´s grid. This paper also lays the theoretical foundation for high-accuracy display of grid transformation data and the establishment of spherical grid spatial measurement.
Fig. 1 The deformation of vector line between spherical grid and plane grid图1 球面平面差异带来的格网矢量线变形 |
Fig. 2 Three directions of lines arranged by hexagon grids on icosahedron triangular facet图2 二十面体三角面上格网排列成直线的3个方向 |
Fig. 3 The approach of calculating spherical line distortion using projection method图3 利用投影法计算球面直线变形的方式 |
Fig. 4 The contorted situation of spherical line using Snyder projection图4 利用Snyder投影法计算球面直线的变形 |
Tab. 1 The average area, average radius and average curvature error of cells on discrete global grid表1 |
层数 | 面积() | 平均半径() | 平均曲率误差() |
---|---|---|---|
2 | 5 544 191.6145 | 1460.8081 | 169 735.3625 |
3 | 1 409 021.0733 | 736.4323 | 42 705.6680 |
4 | 353 720.9629 | 368.9814 | 10 693.8838 |
5 | 88 522.3236 | 184.5867 | 2674.5702 |
6 | 22 136.3436 | 92.3054 | 668.7114 |
7 | 5534.4462 | 46.1542 | 167.1821 |
8 | 1383.6341 | 23.0773 | 41.7958 |
9 | 345.9099 | 11.5387 | 10.4490 |
10 | 86.4776 | 5.7693 | 2.6122 |
11 | 21.6194 | 2.8847 | 0.6531 |
12 | 5.4048 | 1.4423 | 0.1633 |
13 | 1.3512 | 0.7212 | 0.0408 |
14 | 0.3378 | 0.3606 | 0.0102 |
…… | …… | …… | …… |
Fig. 5 The generation effect of vector data on the hexagonal discrete global grid system图5 全球六边形离散格网上矢量数据的生成效果 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
/
〈 | 〉 |