一种面向海量浮动车数据的地图匹配方法
作者简介:王晓蒙(1986-),男,博士生,研究方向为地图学与地理信息系统、智慧城市。E-mail: wangxiaomeng1986@163.com
收稿日期: 2015-04-15
要求修回日期: 2015-05-15
网络出版日期: 2015-10-10
基金资助
国家科技支撑计划项目(2015BAJ02B00);国家科技部政策引导类项目(2011FU125Z24)
A Research of Map-Matching Method for Massive Floating Car Data
Received date: 2015-04-15
Request revised date: 2015-05-15
Online published: 2015-10-10
Copyright
浮动车数据已广泛应用于交通监管、智能出行、城市规划等领域,地图匹配是浮动车数据关键技术之一,保障匹配算法精度的同时提高匹配效率,是面向海量浮动车数据地图匹配方法的难点。本文提出一种基于HMM(Hidden Markov Model)的地图匹配模型,相对传统模型尝试了多个方面的改进:在发射概率计算中引入航向角变量,并探讨了该变量对模型精度的影响;以格网对路网进行划分,构建哈希索引,实现候选路段快速查找;采用路径无权距离替代路径实际距离,并对路网进行预处理,根据浮动车有限时间内的活动范围构建路段转移矩阵,实现路段转移概率快速计算,以减小路径匹配算法时间复杂度。将模型应用于北京出租车轨迹数据匹配结果表明,对于采样时间间隔在1~120 s的浮动车数据模型切实可行。在满足匹配精度应用需求的前提下,模型效率有了较大幅度提升,能有效应用于海量浮动车数据地图匹配。
王晓蒙 , 池天河 , 林晖 , 邵静 , 姚晓婧 , 杨丽娜 . 一种面向海量浮动车数据的地图匹配方法[J]. 地球信息科学学报, 2015 , 17(10) : 1143 -1151 . DOI: 10.3724/SP.J.1047.2015.01143
Floating Car Data (FCD) has been widely applied into traffic supervision, smart travelling, urban planning and so forth. Map-matching is one of the key technologies of FCD, for current map-matching algorithms, it is difficult to improve their map-matching efficiency considerably with a guaranteed accuracy. To solve this problem, our research proposes a map-matching model based on Hidden Markov Model (HMM), and makes a variety of improvements compared with the traditional model: (1) in addition to the position information, it introduces the heading angle variable to emission probability calculation, and discusses its influences on model accuracy and how to set a reasonable weight; (2) it divides road network according to a square grid, constructs candidate road segments searching algorithm based on hash index, and then discusses the optimization approach of the candidate road segment collection; (3) the numbers of segments in the path is used as the measurement for transition probability computation instead of the practical length, which simplifies the calculation procedure; (4) by preprocessing the road net, it constructs a road segment transition matrix according to the characteristic that floating cars have a limited scope of space activities in a given time, which realizes the fast calculation of road segment transition probability and reduces the time complexity of road matching calculation to a significant extent. We have applied this map-matching model in analyzing Beijing taxis’ trajectory data, in which the sampling time interval varies from 1 s to 120 s. The result demonstrates that this model is practicable, the required road segment transition matrix can be constructed in affordable space cost, and its efficiency is improved significantly with the condition that the accuracy meets the application requirements, which makes the model more applicable for massive FCD map-matching. As a conclusion, the proposed model has a high application value for multiple cases.
Key words: FCD; map matching; HMM; grid; road segment transition matrix
Fig. 1 HMM-MM process图1 基于HMM的地图匹配过程 |
Fig. 2 Map-matching model based on HMM图2 基于HMM的地图匹配模型 |
Fig. 3 Road segment selecting by included angles and distances图3 轨迹点与路段的方向夹角和距离 |
Fig. 4 Candidate road segments searching by grids图4 基于网格的邻近子路段查找 |
Fig. 5 Eliminate redundant segments图5 删除冗余路段 |
Tab. 1 Static data scale表1 模型静态数据规模 |
名称 | 键值对组织方式 | 规模(万条) | 占用空间(MB) |
---|---|---|---|
路网邻接矩阵 | 12.48 | 2.7 | |
网格-子路段关系 | 28.84 | 5.8 | |
子路段-路段关系 | 58.39 | 7.9 | |
有限路段转移集合 | 4000 | 847 |
Fig. 6 Floating car data distributions图6 浮动车数据分布情况 |
Fig. 7 Comparison of model accuracies under different weight strategies图7 不同权重策略的模型精度比较 |
Fig. 8 Comparison of matching results under different weight strategies图8 不同权重策略匹配结果对比 |
Fig. 9 Road net topology errors图9 路网拓扑错误 |
Fig. 10 Comparison of accuracies of map-matching图10 地图匹配精度对比 |
Tab. 2 Computational performance of the model without I/O cost表2 模型运行效率(除去I/O耗时) |
算法类型 | 路段查找(s) | 路径匹配(s) | 总耗时(s) | 平均(点/s) |
---|---|---|---|---|
传统模型 | 20.73 | 43.69 | 64.42 | 817.83 |
本文模型 | 5.89 | 0.63 | 6.52 | 6219.11 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
/
〈 | 〉 |