CG-LTDR地表覆盖数据对BCC_AVIM 1.0陆面温度模拟的影响研究
作者简介:史学丽(1972-),山东乳山人,正研级高工,主要从事陆面过程与气候模式发展、遥感数据的模式应用等方面研究。E-mail: shixl@cma.gov.cn
收稿日期: 2015-05-09
要求修回日期: 2015-09-07
网络出版日期: 2015-11-10
基金资助
气象行业专项(GYHY2011060114-3、201306020、201506023)
Impacts of CG-LTDR Land Cover Dataset Updates on the Ground Temperature Simulation with BCC_AVIM 1.0
Received date: 2015-05-09
Request revised date: 2015-09-07
Online published: 2015-11-10
Copyright
本文将CG-LTDR数据集中的地表覆盖数据产品应用于北京气候中心陆面模式(BCC_AVIM 1.0)中,并通过数值模拟分析不同覆盖类型的数据(冰川、湿地、湖泊、植被PFT)更新对模拟结果的影响。结果表明,新数据对不同地表类型的基本分布特征都有合理描述,但与模式中原有数据的差异明显,表现为冰川比例在格陵兰岛西部地区增加,湿地在大部分地区都减少,湖泊在北美和欧亚大陆中高纬地区的比例减少,但青藏高原及周边地区小幅增加,植被PFT的差异最明显。与采用模式原地表覆盖数据的控制试验相比,新数据引入所致的改变,主要局限于地表覆盖数据改变的区域。冰川数据更新使高纬冰川积雪区和青藏高原的温度降低,湿地数据提高了欧洲和北美主要水区的地面温度,湖泊数据有效降低了亚洲地区的温度,更新植被PFT的影响最广泛,使得南美、南非、东北亚、北美和澳洲大部分地区的温度升高,而中国华南江南地区以及南亚地区的温度降低,但在一些地区的模拟效果降低。数据全部更新引起的温度改变最明显,但并不是所有类型的简单叠加,尤其在地表复杂区域。不同的覆盖类型数据更新,可在一定程度上减少模式对于地表温度的模拟偏差(如格陵兰岛西部和青藏高原地区、欧洲内陆湖区的温度偏高),因此需适当选用更新的数据。
史学丽 , 张芳 , 周文艳 , 张艳武 . CG-LTDR地表覆盖数据对BCC_AVIM 1.0陆面温度模拟的影响研究[J]. 地球信息科学学报, 2015 , 17(11) : 1294 -1303 . DOI: 10.3724/SP.J.1047.2015.01294
The land cover (LC) datasets of CG-LTDR was applied in the Beijing Climate Center Land Model (BCC_AVIM 1.0). The impacts of different LC type updates on the ground temperature (Tg) were investigated through several numerical simulations. The results show that the CG-LTDR can reasonably describe the LC features. Compared with the original LC rawdata, the glacier fraction of the new CG-LTDR datasets were extensively increased in the high-latitude regions of the Greenland Island and Europe, as well as the Tibetan Plateau; the fraction of wetland was decreased in the major water body areas of North America and Europe; and the percentage of lake was also majorly decreased in the North American inland water area, but slightly increased around the Tibetan Plateau. The PFT present the largest differences between the new and original datasets. Besides the control runs with the original LC dataset (CTL), five simulations were conducted to compare different impacts of LC types (the glacier, wetland, lake, PFT and all types) on Tg. The changes of Tg due to LC dataset updates majorly constrained in the areas where the LC types (fraction) were modified. With the individual updates of glacier (rGlacier), the simulated Tg was lowered in the high-latitude areas. The simulated Tg with new wetland (rWetland) was increased, while the simulated Tg with the new lake (rLake) datasets were effectively decreased in the Tibetan Plateau. These changes were helpful to improve the model performances on Tg simulations. The most significant and extensive changes among the 4 LC types occurred when updating the PFT (rPFT), which were helpful for reducing the errors in the south and east Asian areas, but enlarged the biases in the other regions. The LC dataset updates of all types (rALL) show the most significant impacts on the Tg simulations, which was not simply the linear sum of the individual updates of LC types, especially in the areas having complex types. Therefore, proper introductions of new CG-LTDR land cover datasets were useful to improve the model performance in Tg simulations.
Key words: land cover; BCC_AVIM 1.0; glacier; wetland; lake; PFT; ground temperature
Tab. 1 BCC_AVIM 1.0 simulation experiments with different land cover type datasets表1 针对地表覆盖类型数据的BCC_AVIM 1.0模拟试验列表 |
试验名称 | 试验方案设计 |
---|---|
CTL | 用模式原始数据生成T106格点上的地表覆盖数据 |
rGlacier | 同CTL,但更新冰川类型覆盖比例数据 |
rWetland | 同CTL,但更新湿地覆盖比例数据 |
rLake | 同CTL,但更新湖泊覆盖比例数据 |
rPFT | 同CTL,但更新植被不同PFT覆盖比例数据 |
rALL | 同CTL,但更新全部覆盖类型数据 |
Fig. 1 Fractions of the non-vegetation types in CG-LTDR dataset (left) and their differences with the original data in CTL (right)图1 CG-LTDR数据中不同非植被类覆盖类型百分比(左)及其与CTL原有数据的差值(右)(%) |
Fig. 2 Fractions of various PFTs in CG-LTDR and their differences with the original data in CTL图2 CG-LTDR数据中不同植被PFT覆盖类型百分比及其与CTL原有数据的差值 |
Fig. 3 ERA-interim observation (a), CTL simulation (b) and the differences between CTL and ERA-interim data (c) for ground temperature图3 ERA-interim观测、CTL模拟,以及CTL与观测的地面温度差(K) |
Fig. 4 CTL simulated and ERA-Interim observed temporal evolution of ground temperature图4 CTL模拟与ERA-interim观测的不同区域平均的地面温度年变化图 注:图4中黑色线为CTL模拟结果,绿色点线为ERA-interim观测 |
Fig. 5 Ground temperature differences between the land cover data revision experiments rGlacier, rWetland, rLake, rPFT, rALL and CTL图5 更新下垫面覆盖数据试验与CTL模拟的地面温度差值 |
Fig. 6 The regional mean ground temperature differences between land cover data revision and CTL experiments.图6 地表数据更新数据试验与CTL模拟的区域平均地面温度差值时间变化 |
Fig. 7 The vegetation's and bare soil's sensible and latent heat fluxes differences图7 rALL试验与CTL模拟的感热与潜热通量差值 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
/
〈 | 〉 |