基于投影寻踪学习网络算法的植物群落高分遥感分类研究
作者简介:杜欣(1989-),女,硕士生,研究方向为生态遥感应用。E-mail: duxin-1321@163.com
收稿日期: 2015-01-16
要求修回日期: 2015-03-06
网络出版日期: 2016-01-10
基金资助
深圳市基本生态控制线专项调查
深圳市2012年测绘地籍工程计划项目([2012]0365)
Research on Classification of Plant Community Using Projection Pursuit Learning Network Algorithm on High Resolution Remote Sensing Images
Received date: 2015-01-16
Request revised date: 2015-03-06
Online published: 2016-01-10
Copyright
传统的植物群落调查方法主要是野外样地调查和抽样统计,其对于地形复杂的区域难以做到对数据的全面调查;将遥感技术应用于植物群落调查,可实现数据的全面获取,以及对植物群落的快速分类。在深圳市植物群落野外样地调查的基础上,本文应用高分辨率Pléiades影像,结合光谱、地形及纹理信息,采用投影寻踪学习网络的方法,实现了深圳市东部地区植物分类。在实验中,选取人工林和次生林中典型群落样本,将投影寻踪与学习网络算法结合应用于植被分类,通过分类结果与经典监督分类方法比较表明,该算法应用于植物群落分类是可行的;并且该算法分类精度高,更新速度快,能满足深圳市重点项目基本生态控制线专项调查的要求。
杜欣 , 黄晓霞 , 李红旮 , 沈利强 . 基于投影寻踪学习网络算法的植物群落高分遥感分类研究[J]. 地球信息科学学报, 2016 , 18(1) : 124 -132 . DOI: 10.3724/SP.J.1047.2016.00124
Plant community is a significant content in the ecosystem. Traditional investigation method for plant community is mainly based on statistical sampling, which is limited by the data acquisition from complex terrain areas. In contrast, high-resolution remote sensing technique provides a convenient way to quickly access data in a large area. To overcome the shortcomings derived from the high dimensional features, which is caused by related data increasing, we choose the algorithm of projection pursuit learning network (PPLN) along with field samples of typical plant communities to realize a fast classification on the vegetation in the east of Shenzhen. Then,in the experiment, the spectral and texture information extracted from Pléiades images, and the terrain interpolated from topographic map are selected and used to build high dimensional features, which is crucial to the vegetation classification using remote sensing images. The learning network for projection pursuit is applied to discriminating the typical communities in both plantation and natural secondary forest in the study area. Compared with Maximum-likelihood classification (MLC) and Support Vector Machine (SVM), PPLN can achieve more accurate results for plant community classification. As a conclusion, the plant community classification with PPLN meets the requirements of the investigation project, achieves the quick updating of some basic information related to forest resources, and looks forward to involve in some other ecological research as well.
Tab. 1 Bands information of Pléiades data表1 Pléiades数据波段信息 |
光谱类型 | 波段范围(nm) | 分辨率(m) |
---|---|---|
全色(Pan) | 480 ~ 830 | 0.5 |
蓝(B) | 430 ~ 550 | 2 |
绿(G) | 490 ~ 610 | 2 |
红(R) | 600 ~ 720 | 2 |
近红外(NIR) | 750 ~ 950 | 2 |
Fig. 1 Distribution of collected sample points in the field图1 野外采集样本点分布图 |
Tab. 2 Example list of the sample species information表2 样方物种信息示例表 |
序号 | 群落名称 | 生态系统类型 | 种名 | 多度 | 频度 | 相对多度(%) | 相对频度(%) | 显著度(%) | 重要值 |
---|---|---|---|---|---|---|---|---|---|
64 | 台湾相思 | 人工林 | 台湾相思 | 481 | 9 | 83.8 | 25 | 91.6 | 200.4 |
野牡丹 | 55 | 7 | 9.58 | 19.44 | 3.9 | 32.92 | |||
鸭脚木 | 7 | 5 | 1.22 | 13.89 | 2.32 | 17.42 | |||
桃金娘 | 6 | 4 | 1.05 | 11.11 | 0.21 | 12.37 | |||
银柴 | 12 | 3 | 2.09 | 8.33 | 1.19 | 11.62 | |||
梅叶冬青 | 3 | 3 | 0.52 | 8.33 | 0.2 | 9.05 | |||
栀子 | 4 | 2 | 0.7 | 5.56 | 0.11 | 6.36 | |||
变叶榕 | 3 | 2 | 0.52 | 5.56 | 0.14 | 6.22 |
Fig. 2 Sketch map of the project pursuit learning network图2 投影寻踪学习网络示意图 |
Tab. 3 List of input variables表3 输入变量列表 |
维度序号 | 输入变量 | 表达信息 | 维度序号 | 输入变量 | 表达信息 |
---|---|---|---|---|---|
1 | B1 | 蓝波段 | 10 | R6 | B3/B4 |
2 | B2 | 绿波段 | 11 | NDVI | 植被指数 |
3 | B3 | 红波段 | 12 | Elevation | 高程 |
4 | B4 | 近红外波段 | 13 | Slope | 坡度 |
5 | R1 | B1/B2 | 14 | Mean(B3) | 红波段均值 |
6 | R2 | B1/B3 | 15 | Correlation(B3) | 红波段相关性 |
7 | R3 | B1/B4 | 16 | Mean(B4) | 近红外波段均值 |
8 | R4 | B2/B3 | 17 | Correlation(B4) | 近红外波段相关性 |
9 | R5 | B2/B4 | 18 | Entropy(B4) | 近红外波段熵 |
Tab. 4 Comparison of classification accuracies amongseveral methods表4 各方法分类结果精度对比表 |
分类方法 | 类别 | |||
---|---|---|---|---|
相思群落 | 分类精度(%) | 浙江润楠-鸭脚木群落 | 分类精度(%) | |
最大似然法 | 91 | 91 | 70 | 70 |
SVM算法 | 90 | 90 | 70 | 70 |
PPLN算法 | 93 | 93 | 73 | 73 |
Fig. 3 Remote sensing images of two test regions图3 2个测试区遥感影像图 |
Fig. 4 Investigation classification map and classification result with three methods for region A图4 A区域实地调查分类图及3种方法分类结果 |
Fig. 5 Investigation classification map and classification result with three methods for region B图5 B区域实地调查分类图及3种方法分类结果 |
Tab. 5 Assessment list of region A′s classification accuracy表5 A区域分类精度评价表 |
分类方法 | 类别 | 生产者精度(%) | 用户精度(%) | 总体精度(%) | Kappa系数 |
---|---|---|---|---|---|
最大似然法 | 相思林群落 | 76.01 | 89.30 | 70.0 | 0.64 |
浙江润楠群落 | 63.89 | 59.83 | |||
鸭脚木群落 | 80.66 | 76.40 | |||
SVM算法 | 相思林群落 | 80.04 | 84.37 | 78.0 | 0.68 |
浙江润楠群落 | 67.15 | 73.22 | |||
鸭脚木群落 | 83.01 | 75.42 | |||
PPLN算法 | 相思林群落 | 80.01 | 87.49 | 80.6 | 0.70 |
浙江润楠群落 | 75.24 | 68.15 | |||
鸭脚木群落 | 82.83 | 82.06 |
Tab. 6 Assessment list of region B′s classification accuracy表6 B区域分类精度评价表 |
分类方法 | 类别 | 生产者精度(%) | 用户精度(%) | 总体精度(%) | Kappa系数 |
---|---|---|---|---|---|
最大似然法 | 桉树林群落 | 78.87 | 65.62 | 72.0 | 0.61 |
相思林群落 | 76.98 | 75.24 | |||
荔枝林 | 67.12 | 82.30 | |||
SVM算法 | 桉树林群落 | 62.41 | 91.03 | 73.7 | 0.60 |
相思林群落 | 83.41 | 62.72 | |||
荔枝林 | 77.43 | 67.92 | |||
PPLN算法 | 桉树林群落 | 80.05 | 80.64 | 80.7 | 0.71 |
相思林群落 | 83.31 | 74.95 | |||
荔枝林 | 79.16 | 86.14 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
|
[4] |
[
|
[5] |
[
|
[6] |
|
[7] |
|
[8] |
[
|
[9] |
|
[10] |
[
|
[11] |
[
|
[12] |
[
|
[13] |
[
|
[14] |
[
|
[15] |
[
|
[16] |
[
|
[17] |
[
|
[18] |
[
|
[19] |
[
|
[20] |
[
|
[21] |
[
|
[22] |
[
|
[23] |
Jimenez,
|
[24] |
[
|
[25] |
[
|
[26] |
|
[27] |
[
|
[28] |
[
|
[29] |
[
|
[30] |
|
[31] |
|
[32] |
|
/
〈 | 〉 |