顾及地形特征的DEM脆弱水印完整性认证算法
作者简介:朱长青(1962-),男,博士,教授,研究方向为地理数据安全,不确定性等.E-mail:zcq88@263.net
收稿日期: 2015-05-13
要求修回日期: 2015-06-05
网络出版日期: 2016-03-10
基金资助
国家社会科学基金重大项目(11&ZD162)
国家自然科学基金项目(41301413)
江苏省自然科学基金项目(BK20130903)
江苏高校优势学科建设工程资助项目
A Fragile Watermarking Algorithm for Integrity Authentication of DEM Based on the Terrain Feature
Received date: 2015-05-13
Request revised date: 2015-06-05
Online published: 2016-03-10
Copyright
针对目前DEM完整性认证的需求,以及相关认证方法的欠缺,基于脆弱水印技术提出了一种充分顾及DEM地形特征的完整性认证算法.本文对DEM数据进行特征分析,进而提出与其相适应的脆弱水印技术的特殊要求.为了减少水印嵌入对载体数据的影响,在脆弱水印嵌入过程中,首先,提取DEM数据特征线,并依此将数据分为特征区域和非特征区域2部分;然后,根据特征区域的栅格数和水印序列段生成脆弱水印,并以LSB位平面替换的方法,将水印信息嵌入到非特征区域部分.在完整性认证过程中,同样提取DEM数据的特征区域,将重新生成的水印信息与提取的水印信息进行对比,从而判断数据的完整性.算法实验结果表明,其能有效认证DEM数据的完整性,对数据影响较小,且算法安全性和适用性较强.
朱长青 , 许惠 , 任娜 . 顾及地形特征的DEM脆弱水印完整性认证算法[J]. 地球信息科学学报, 2016 , 18(3) : 369 -375 . DOI: 10.3724/SP.J.1047.2016.00369
Considering the necessity of integrity certification and the lack of certification methods for DEM, an integrity certification algorithm based on fragile watermarking for DEM was proposed, which had fully taken the terrain features into account. The characteristic of DEM data is analyzed in order to propose the special requirements of the fragile watermarking technology. To reduce the impact of watermarked data, in the process of fragile watermark embedding, based on the feature lines extracted from the original DEM data, the data was firstly divided into two different parts: the feature region and non-feature region. Secondly, the fragile watermarking information was generated according to the number of raster in feature region and watermarking sequence segments, and then it was embedded into the non-feature region by LSB-based method. In the integrity certification process, the same feature region was extracted from DEM data, and the regenerated watermark information was compared with the extracted one in order to determine the integrity of the data. Finally, experiments using the proposed algorithms were presented. Experimental results show that the presented algorithm not only is able to effectively certificate the integrity of DEM data, but also has little influence on the data accuracy. In addition, the algorithm has high security and suitability.
Fig. 1 Flow chart of watermark generation and embedding图1 水印生成与嵌入流程图 |
Fig. 2 Flow chart of watermark detection图2 水印检测流程图 |
Fig. 3 The original and watermarked DEM data图3 嵌入水印前与嵌入水印后的DEM数据 |
Fig. 4 The 3-D visualization renderings of the original and watermarked DEM图4 原始DEM与含水印DEM的三维可视化效果图 |
Fig. 5 The watermarked DEM data under different modifing method图5 不同修改方式下的含水印DEM数据晕渲效果图 |
Tab. 1 The experimental results of certification accuracy analysis表1 认证准确性分析实验结果 |
DEM数据编号 | 修改方式 | 认证结果 | 认证准确性 |
---|---|---|---|
图3(b) | 不作修改 | 通过 | 正确 |
图5(a) | 高程平移(h+7) | 不通过 | 正确 |
图5(b) | 高程缩放(h*0.5) | 不通过 | 正确 |
图5(c) | 随机噪声[-3,3] | 不通过 | 正确 |
图5(d) | 数据删除(15%) | 不通过 | 正确 |
图5(e) | 数据裁剪(15%) | 不通过 | 正确 |
图5(f) | 部分替换(5%) | 不通过 | 正确 |
Tab. 2 The basic statistical information of the original and watermarked DEM表2 水印嵌入前后DEM数据基本统计信息(m) |
高程最小值 | 高程最大值 | 平均高程值 | 标准差 | |
---|---|---|---|---|
原始DEM | 894.56 | 1106.71 | 993.81 | 40.74 |
含水印DEM | 894.57 | 1106.71 | 993.79 | 40.75 |
Fig. 6 The comparison result of contours extracted from the original and watermarked DEM图6 原始DEM与含水印DEM提取等高线结果对比图 |
Fig. 7 The comparison result of stream networks extracted from the original and watermarked DEM图7 原始DEM与含水印DEM提取汇水线结果对比图 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
|
[5] |
[
|
[6] |
[
|
[7] |
|
[8] |
[
|
[9] |
|
[10] |
|
[11] |
|
[12] |
[
|
[13] |
CH/T 9009. 2-2010,基础地理信息数字成果1:5000,1:10000,1:25000,1:50000,1:100000数字高程模型[S].2010.
[ CH/T 9009. 2-2010, Digital products of fundamental geographic information.1:5000 1:10000 1:25000 1:50000 1:100000 digital elevation models[S].2010. ]
|
/
〈 | 〉 |