MODIS_LST与AMSR-E_BT的相关性及地表温度反演
作者简介:时洪涛(1990-),男,硕士生,研究方向为地震热红外异常信息提取。E-mail: shihongtaosg@163.com
收稿日期: 2015-03-05
要求修回日期: 2015-05-27
网络出版日期: 2016-04-19
基金资助
地震动力学国家重点实验室资助项目(LED2012B02)
上海地区地壳活动图像天地联合监测分析资助项目(14231202600)
The Correlation Analysis Between MODIS_LST and AMSR-E_BT and Study of LST Retrieval Method
Received date: 2015-03-05
Request revised date: 2015-05-27
Online published: 2016-04-19
Copyright
本文以2007年和2008年MODIS每日地表温度(LST)数据及AMSR-E地表亮温(BT)数据为研究对象,结合土地覆盖类型数据,统计分析MODIS_LST与AMSR-E_BT在不同土地覆盖类型、频率和极化方式条件下的相关性。结果表明,频率在18.7、23.8和36.5 GHz的AMSR-E-BT与MODIS_LST的相关性较大,且在垂直极化通道上的相关性较在水平极化上大;不同土地覆盖类型,与MODIS_LST相关性较大所对应的AMSR-E微波通道不同。同时,考虑混合像元问题对相关性的影响,对25种不同地物类型组合下MODIS_LST与AMSR-E-BT的相关性进行统计分析,发现混合像元中地物类型越多,则二者相关性越小。最后,采用多元线性回归分析法,根据不同土地覆盖类型建立反演回归模型,对部分研究区域MODIS-LST进行反演,误差平均在±3.15 K以内,与不考虑下垫面覆盖的模型比较,反演MODIS_LST精度平均提高了1.5 K。
关键词: MODIS地表温度; AMSR-E地表亮温; 相关性分析; 反演
时洪涛 , 宋冬梅 , 单新建 , 崔建勇 , 臧琳 , 沈晨 , 屈春燕 , 任鹏 , 邵红梅 , 盛辉 , 吴会胜 , 宋先月 . MODIS_LST与AMSR-E_BT的相关性及地表温度反演[J]. 地球信息科学学报, 2016 , 18(4) : 564 -574 . DOI: 10.3724/SP.J.1047.2016.00564
By taking MODIS daily land surface temperature (LST) data and AMSR-E brightness temperature (BT) data from 2007 to 2008 as the input, combining with the land cover type data, the statistics and analysis of the relativity between MODIS_LST and AMSR-E_BT in different land cover types, channels and polarization ways are produced. Based on the International Geosphere-Biosphere Program (IGBP) vegetation classification scheme, land cover data is re-classified into seven types, including water, forest land, grass land, farmland, urban land, desert land and other land cover types. The statistical result shows that the correlation is apparent between MODIS_LST and AMSR-E_BT in 18.7 GHz, 23.8 GHz and 36.5 GHz channel, and it reveals a higher correlation in the vertical channel compared to the horizontal channel. Moreover, this paper finds out that the microwave channel of AMSR-E_BT, which has the highest relativity with MODIS-LST, is different with respect to different land cover types. In addition, by considering the impact of mixed pixel, this paper analyzes the correlation between MODIS_LST and AMSR-E_BT for 25 types of land cover type combinations. It is inferred that the correlation declines as the quantity of land cover types in the single mixed pixel increases. Finally, according to different land cover type combinations, the inversion model is established by adopting the multivariate linear regression method, and this model has been applied to inverse MODIS_LST in a part of the study area. Inversion results reveal that the error is limited in ±3.15 K in average, and the inversion accuracy is raised by 1.5 K successfully in comparison with the inversion model without considering land cover type combination. However, there are some problems with MODIS land surface temperature inversion by using AMSR-E brightness temperature, such as the space resolution variation between MODIS LST and AMSR-E_BT, changes of land cover type with changing seasons and the influence of relative humidity of land cover on the retrieval accuracy. Therefore, selecting land surface bright temperature with a high quality and space resolution, considering season variations and classification accuracy of land cover type factors are future research directions.
Key words: MODIS_LST; AMSR-E_BT; correlation analysis; retrieval
Fig. 1 The MODIS land surface temperature of study area on January 1, 2008图1 2008年1月1日研究区域MODIS地表温度数据 |
Fig. 2 AMSR-E brightness temperature of study area on January 1, 2008图2 2008年1月1日研究区域AMSR-E地表亮温数据 |
Tab. 1 Information of AMSR-E microwave brightness temperature and MODIS data表1 AMSR-E微波亮温与MODIS数据信息 |
AMSR-E微波亮温数据 | MODIS数据 | |||||
---|---|---|---|---|---|---|
频率/GHZ | 极化方式 | 空间分辨率/ km | 数据类型 | 空间分辨率/km | 数据集 | |
6.9 | V\H | 5.4 | 地表温度 (MOD 11A1) | 1 | LST_Night_1 Km | |
10.7 | V\H | 5.4 | ||||
18.7 | V\H | 5.4 | ||||
23.8 | V\H | 5.4 | 土地覆盖类型 (MCD 12Q2) | 0.5 | Land_Cover_Type_1 | |
36.5 | V\H | 5.4 | ||||
89.0 | V\H | 5.4 |
Fig. 3 Flow chart of technical process图3 技术路线流程图 |
Tab. 2 Scheme of IGBP classification and reclassification表2 IGBP全球植被分类与重分类方案 |
分类DN值 | IGBP | 重分类后 | 分类DN值 | IGBP | 重分类后 |
---|---|---|---|---|---|
0 | 水体 | 水体 | 8 | 多树的草原 | 草地 |
1 | 常绿针叶林 | 林地 | 9 | 稀树草原 | |
2 | 常绿阔叶林 | 10 | 草原 | ||
3 | 落叶针叶林 | 11 | 永久湿地 | ||
4 | 落叶阔叶林 | 12 | 作物 | 农用地 | |
5 | 混交林 | 14 | 作物和自然植被的镶嵌体 | ||
6 | 郁闭灌丛 | 16 | 裸地或低植被覆盖地 | 荒漠 | |
7 | 开放灌丛 | 15 | 雪、冰 | 其他 未分类区 | |
13 | 城市和建成区 | 城镇 | 254、255 | 未分类区填充值 |
Tab. 3 Different combinations of land types in a mixed pixel表3 混合像元的不同地物类型组合 |
单一地物类型 | 两种地物类型 | 3种地物类型 | 4种地物类型 | 5种地物类型 | 6种地物类型 |
---|---|---|---|---|---|
♢ | ♢〇 | ♢☆△ | ♢☆〇▱ | ♢☆△⎔▱ | ♢☆△ 〇⎔▱ |
☆ | ♢△ | ♢▱〇 | |||
△ | ♢☆ | ☆▱〇 | |||
〇 | ♢▱ | ♢△⎔ | ♢☆⎔▱ | ♢☆△〇▱ | |
⎔ | ☆▱ | ♢△〇 | |||
▱ | ♢⎔ | ♢△▱ | |||
〇▱ | △〇⎔ |
注:♢草地、☆林地、△荒漠、〇城镇、⎔水体、▱农用地 |
Fig. 4 The sample point locations and land cover types of the study area图4 研究区域范围、土地覆盖类型及选点位置 |
Fig. 5 Sketch map of multiple linear regression图5 多元线性回归法示意图 |
Fig. 6 Scatter diagrams of the MODIS_LST and AMSR-E_BT with different channels in 2008图6 2008年不同通道下MODIS_LST和AMSR-E_BT散点图 |
Fig. 7 Correlation coefficients between LST and BT of a mixed pixel including a single land cover type图7 单一地物类型地表温度和地表亮温相关系数 |
Fig. 8 Correlation coefficients between LST and BT of a mixed pixel including two land cover types图8 2种地物类型组合下地表温度和地表亮温的相关系数 |
Fig. 9 Correlation coefficients between LST and BT of a mixed pixel including three land cover types图9 3种和3种以上地物类型组合下地表温度和地表亮温的相关系数 |
Fig. 10 MODIS_LST and AMSR-E_BT of data filling research area on January 1, 2008图10 补值区2008年1月1日MODIS地表温度与AMSR-E_6.9 GHz_H地表亮温 |
Fig. 11 MODIS_LST, AMSR-E_BT and land cover type data of data filling research area图11 补值区的地表温度、土地覆盖类型、地表亮温数据 |
Fig. 12 Comparison of the results of MODIS_LST between two types of retrieval methods in the grass land图12 草地区域的2种反演方法地表温度反演结果对比 |
Fig. 13 Retrieval results of MODIS_LST in the desert area图13 荒漠区域地表温度反演结果 |
Fig. 14 Retrieval result of MODIS LST in combination of farmland and forestland cover type图14 农用地和林地混合区域地表温度反演值结果 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
[
|
[11] |
|
[12] |
[
|
[13] |
[
|
[14] |
[
|
[15] |
[
|
[16] |
|
[17] |
[
|
[18] |
[
|
[19] |
|
[20] |
[
|
[21] |
[
|
/
〈 |
|
〉 |