乌江上游地区森林生态系统水源涵养功能评估及其空间差异探究
作者简介:唐玉芝(1991-),女,广东普宁人,博士生,研究方向为地图学与地理信息系统专业。E-mail: tangyz.14b@igsnrr.ac.cn
收稿日期: 2015-09-21
要求修回日期: 2016-02-19
网络出版日期: 2016-07-15
基金资助
国家科技支撑计划课题“国家生态系统观测评估技术系统集成研究与示范”(2013BAC03B00)
Water Conservation Capacity of Forest Ecosystem and Its Spatial Variation in the Upper Reaches of Wujiang River
Received date: 2015-09-21
Request revised date: 2016-02-19
Online published: 2016-07-15
Copyright
乌江流域是西南地区重要经济中心的生态和安全屏障,其上游地区长年面临水土流失和土地石漠化等问题,严重影响到当地和长江沿岸人民的生产生活。本文基于贵州省毕节地区2010年森林二类调查小班数据,运用综合能力蓄水法对乌江上游地区森林生态系统水源涵养量进行估算,分析了水源涵养能力的空间分异特征,并使用线性回归和相关分析法对森林水源涵养能力与林地海拔、坡度和土地退化类型之间的关系进行了深入探讨。结果表明:(1)2010年,研究区森林生态系统的水源涵养总量为563.05106 m3,单位面积水源涵养量达774.73 t/hm2,水源涵养能力分布表现为东部地区自东北向西南逐渐减弱、西部地区强弱相间的碎片化分布特征;(2)随着林地海拔的升高,森林单位面积水源涵养量表现出显著的下降趋势,海拔平均每上升1000 m,单位水源涵养量相应减少90.56 t/hm2左右;(3)森林水源涵养能力与坡度呈显著的负相关,坡度平均每增加1°,单位水源涵养量相应减少2.44 t/hm2;(4)土地退化对森林水源涵养功能的影响较大,退化土地的森林水源涵养能力较非退化土地平均下降23.50%。正确认识森林生态系统的水源涵养功能及其空间差异,对了解当地森林生态系统现状,以及制订实施更有针对性、更高效的水资源可持续利用和生态环境恢复及建设等相关政策具有重要意义。
唐玉芝 , 邵全琴 . 乌江上游地区森林生态系统水源涵养功能评估及其空间差异探究[J]. 地球信息科学学报, 2016 , 18(7) : 987 -999 . DOI: 10.3724/SP.J.1047.2016.00987
As the longest tributary on the right bank of upper Yangtze River, while also occupying the largest basin area in Guizhou Province, Wujiang River is of great importance to the economic and ecological environment in Yangtze Basin and Southwest China. However, the upper reaches of Wujiang River are suffering from long-term soil erosion and land degradation, which has threatened the local safety and development. This paper, based on the forest resource inventory data of Bijie prefecture in Guizhou Province in 2010, aims to estimate the water conservation of forest ecosystem in the upper reaches of Wujiang River and to analyze its spatial variation. The relationship between the unit water conversation of forest ecosystem, which is regarded as the Forest Water Conservation Capacity (FWCC) in this paper, and elevation, slope and land degradation types was deeply explored. The integrated storage capacity method and the linear regression was employed. The results show that: (1) In 2010, the water conservation of forest ecosystem in the study area was 563.05 million cubic meters in total, yielding a water conservation of 774.73 t/hm2 per unit area. FWCC presented a pattern of gradually decreasing from northeast to southwest in the east region, and an uneven pattern in the west region. (2) A significant negative correlation was found between FWCC and elevation, that FWCC decreased by 90.56 t/hm2 with every 1 km increase in elevation. (3) FWCC significantly decreased by 2.44 t/hm2 with every 1 degree increase in slope. (4) Land degradation showed a strong negative effect to FWCC, and the FWCC of degraded land dropped by 23.50% on average compared with the non-degraded land. A better understanding of the water conservation function and its spatial variation of forest ecosystem would be helpful to learn the status of local forest ecosystem, and to formulate and implement the sustainable utilization of water resources, as well as the restoration and construction of ecological environment, under the guidance of more targeted and efficient policies.
Fig.1 Location of the study area in the upper reaches of Wujiang River, Bijie prefecture图1 毕节地区乌江上游研究区地理位置 |
Tab.1 General characteristics of different vegetation types in the study area表1 研究区不同森林类型基本概况 |
森林类型 | 海拔范围/m | 平均郁闭度 | 平均胸径/cm | 活立木蓄积量/(m3/hm2) | 平均土层厚度/cm | 主要优势树种 |
---|---|---|---|---|---|---|
温性针叶林 | 786~2854 | 0.394 | 8.239 | 15.890 | 42.36 | 华山松、柳杉 |
暖性针叶林 | 714~2566 | 0.475 | 12.003 | 36.826 | 39.09 | 马尾松、云南松、杉木 |
暖性针阔混交林 | 782~2450 | 0.419 | 10.302 | 24.944 | 42.00 | 针阔混交林 |
落叶阔叶林 | 705~2472 | 0.399 | 9.443 | 19.197 | 42.27 | 桦类、椴类、杨树 |
常绿落叶阔叶混交林 | 722~2677 | 0.532 | 9.097 | 20.827 | 36.67 | 栎类 |
常绿阔叶林 | 777~2618 | 0.523 | 9.301 | 25.185 | 38.04 | 樟类、楠类 |
暖性竹林 | 804~2074 | 0.703 | 4.368 | 0.003 | 52.92 | 毛竹、杂竹 |
经济林 | 738~2442 | 0.311 | 3.597 | 2.838 | 44.44 | 梨桃类、核桃、板栗 |
灌丛 | 708~2886 | 0.489 | 0.003 | 0.004 | 31.70 | 杂灌、茶叶、火棘 |
Tab.2 Relevant parameters adopted in the water conservation estimations of different vegetation types in the study area and their literature references表2 研究区不同森林类型水源涵养量估算的相关参数及其文献来源 |
森林类型 | 林冠层截留率/(%) | 枯落物层单位最大持水量/(t/hm2) | 土壤层非毛管孔隙度/(%) | 文献来源 |
---|---|---|---|---|
温性针叶林 | 28.73 | 25.67 | 10.16 | [32]、[33]、[4] |
暖性针叶林 | 28.50 | 37.69 | 8.91 | [32]、[34]、[4] |
暖性针阔混交林 | 24.33 | 34.08 | 12.13 | [34]、[33]、[34] |
落叶阔叶林 | 20.19 | 32.46 | 9.15 | [34]、[33]、[34] |
常绿落叶阔叶混交林 | 22.57 | 32.66 | 15.32 | [32]、[33]、[4] |
常绿阔叶林 | 18.14 | 18.62 | 10.31 | [34]、[34]、[34] |
暖性竹林 | 18.83 | 20.69 | 11.77 | [32]、[33]、[4] |
经济林 | 29.32 | 23.8 | 8.65 | [35]、[31]、[36] |
灌丛 | 24.56 | 15.97 | 9.80 | [35]、[33]、[37] |
注:选择引用文献时首要考虑与本研究区地理环境和气候条件相近的区域,其次考虑林型和立地条件。文献来源一栏的引用文献按照林冠层截留率、枯落物层单位最大持水量和土壤层非毛管孔隙度的文献来源依次排序 |
Fig.2 Spatial distribution of different vegetation types in the study area图2 研究区森林类型空间分布图 |
Fig.3 Spatial distribution of the forest water conservation in total and the relevant values per unit area in the study area图3 研究区森林水源涵养量和单位面积水源涵养量的空间分布 |
Tab.3 Water conservation of different vegetation types in the study area表3 研究区不同森林类型水源涵养量 |
代码 | 森林类型 | 林地面积/(103hm2) | 林冠截留量/(106m3) | 枯落物层持水量/(106m3) | 土壤蓄水量/(106m3) | 水源涵养总量/(106m3) | 单位面积水源涵养量/(t/hm2) |
---|---|---|---|---|---|---|---|
Ⅰ | 温性针叶林 | 135.086 | 56.702 | 3.468 | 58.334 | 118.503 | 877.245 |
Ⅱ | 暖性针叶林 | 125.837 | 52.397 | 4.743 | 44.942 | 102.081 | 811.216 |
Ⅲ | 暖性针阔混交林 | 9.427 | 3.351 | 0.321 | 4.754 | 8.426 | 893.807 |
Ⅳ | 落叶阔叶林 | 67.856 | 20.016 | 2.203 | 26.279 | 48.497 | 714.705 |
Ⅴ | 常绿落叶阔叶混交林 | 64.007 | 21.106 | 2.090 | 37.225 | 60.421 | 943.975 |
Ⅵ | 常绿阔叶林 | 4.173 | 1.106 | 0.078 | 1.700 | 2.883 | 690.942 |
Ⅶ | 暖性竹林 | 0.202 | 0.056 | 0.004 | 0.129 | 0.189 | 934.861 |
Ⅷ | 经济林 | 3.103 | 1.329 | 0.074 | 1.172 | 2.575 | 829.922 |
Ⅸ | 灌丛 | 317.078 | 113.775 | 5.064 | 100.635 | 219.473 | 692.174 |
Fig.4 Water conservation in total and the relevant values per unit area of different vegetation types and their comparison with the forest area图4 不同森林类型水源涵养量、单位面积水源涵养量及其与林地面积的比较(注:图中森林类型代码对应表3的代码;为方便研究不同森林类型的水源涵养量、单位面积水源涵养量是否与林地面积之间存在相关关系,图中将森林类型按照其林地面积从小到大依次排序) |
Fig.5 Changes of the area proportion distribution and unit area water conservation of different vegetation types with respect to elevation图5 不同森林类型面积分布比例和单位面积水源涵养量随海拔升高的变化情况 |
Tab.4 The regression equations and correlation coefficients of water conservation capacity and slope gradient表4 水源涵养能力和坡度的回归方程及相关系数 |
代码 | 森林类型 | 回归方程 | 相关系数R2 | P |
---|---|---|---|---|
Ⅰ | 温性针叶林 | y = -2.5116x + 938.62 | 0.765 | * |
Ⅱ | 暖性针叶林 | y = -0.8702x + 831.01 | 0.378 | |
Ⅲ | 暖性针阔混交林 | y = -3.8570x +1002.48 | 0.583 | |
Ⅳ | 落叶阔叶林 | y = -2.6220x + 787.02 | 0.803 | * |
Ⅴ | 常绿落叶阔叶混交林 | y = -0.8110x + 948.23 | 0.106 | |
Ⅵ | 常绿阔叶林 | y = -1.2000x + 727.78 | 0.348 | |
Ⅶ | 暖性竹林 | y = -7.1497x + 991.73 | 0.744 | * |
Ⅷ | 经济林 | y = -4.8133x + 998.49 | 0.582 | |
Ⅸ | 灌丛 | y = -0.5153x + 687.96 | 0.136 | |
研究区整体 | y = -2.4350x + 828.09 | 0.910 | ** |
注:**表示P<0.01;*表示P<0.05 |
Fig.6 Changes of unit area water conservation of the total study area and of some specific vegetation types with respect to the increase of slope gradient图6 同一坡向下(南坡)研究区整体和几种不同森林类型单位面积水源涵养量随坡度增加的变化情况 |
Fig.7 Spatial distribution of different land degradation types and the water conservation capacity thereof图7 不同土地退化类型及其水源涵养能力的空间分布 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
[
|
[6] |
|
[7] |
|
[8] |
[
|
[9] |
[
|
[10] |
[
|
[11] |
[
|
[12] |
[
|
[13] |
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
[
|
[28] |
[
|
[29] |
[
|
[30] |
[
|
[31] |
[
|
[32] |
[
|
[33] |
[
|
[34] |
[
|
[35] |
[
|
[36] |
[
|
[37] |
[
|
[38] |
[
|
[39] |
[
|
[40] |
|
[41] |
[
|
[42] |
[
|
[43] |
[
|
[44] |
[
|
[45] |
[
|
[46] |
[
|
[47] |
[
|
[48] |
[
|
[49] |
|
[50] |
|
[51] |
[
|
[52] |
[
|
/
〈 | 〉 |