特约稿件

未来RCP4.5情景下非洲地区主要气候要素时空演变特征

  • 刘玉洁 , 1, * ,
  • 戴君虎 1 ,
  • 陈鹏飞 2 ,
  • 邵全琴 1
展开
  • 1. 中国科学院地理科学与资源研究所 陆地表层格局与模拟院重点实验室,北京 100101
  • 2. 中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101

作者简介:刘玉洁(1982-),女,博士,副研究员,主要从事气候变化影响与适应研究。E-mail:

收稿日期: 2016-05-18

  要求修回日期: 2016-06-16

  网络出版日期: 2016-11-20

基金资助

国家自然科学基金项目(41301091、 41671037)

国家重点研发计划项目(2016YFA0602402)

中国科学院青年创新促进会会员项目(2016049)

Temporal-spatial Variation of Climate Factors in Africa under Representative Concentration Pathways Scenario 4.5

  • LIU Yujie , 1, * ,
  • DAI Junhu 1 ,
  • CHEN Pengfei 2 ,
  • SHAO Quanqin 1
Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, Key Laboratory of Land Surface Pattern and Simulation, Chinese Academy of Sciences, Beijing 100101, China
  • 2. Institute of Geographic Sciences and Natural Resources Research, State Key Laboratory of Resources and Environmental Information System, Chinese Academy of Sciences, Beijing 100101, China.
*Corresponding author: LIU yujie, E-mail:

Received date: 2016-05-18

  Request revised date: 2016-06-16

  Online published: 2016-11-20

Copyright

《地球信息科学学报》编辑部 所有

摘要

气候变化影响及其适应受到广泛关注。大量研究表明,受气候变化影响所造成的增温和降水减少已影响到非洲地区的农业生产和环境。本文利用HadGEM2区域气候模式输出的RCP4.5情景数据,基于时间序列分析及空间分析方法,对非洲大陆2010-2099年主要关键气候要素时空演变特征进行了预估,探讨了非洲大陆未来90年包括降水、辐射、平均气温、最高气温、最低气温等主要气候要素的时空变化格局。结果表明:各气候要素在不同时段的变化均表现出明显的地域分异差异: ① 相较于1970-1999年基准时段,未来3个时段(2020s、2050s、2080s)降水均增加,在2080s增至峰值,增加地区集中在20 °N附近的尼日尔、乍得、利比亚等国;最高增幅达4.5%;② 辐射增加区域分布在赤道地区和非洲大陆的南北两端,尤其是高海拔地区,如撒哈拉沙漠以北的阿特拉斯山脉附近,加丹加高原等地,最大增幅达0.04%;③ 未来90年非洲地区气温增加明显,包括平均气温、最高气温、最低气温,气温增幅由2020s、2050s、2080s依次递增,到2080s达到最大值,平均气温、最高气温、最低气温的最大增幅分别达到5、4.3和5.1 ℃。总体上,未来90年非洲大陆的气温较1970-1999年基准时段明显增多,但靠近海域的沿海地区增温较小,这是由于受到近海寒流的影响,起到了降温的作用。气温增幅过高也将不利于未来农业生产和地区安全。

本文引用格式

刘玉洁 , 戴君虎 , 陈鹏飞 , 邵全琴 . 未来RCP4.5情景下非洲地区主要气候要素时空演变特征[J]. 地球信息科学学报, 2016 , 18(11) : 1522 -1528 . DOI: 10.3724/SP.J.1047.2016.01522

Abstract

Impacts of climate change and adaptation are of key concern of scientific research. Vast research results indicated that agricultural production and environment in Africa have been affected a lot by increased temperature and decreased precipitation caused by climate change. This study used the output of regional climate model HadGEM2 under Representative Concentration Pathways Scenario 4.5 (RCP 4.5) to analyze the temporal and spatial evolution of major climate factors including precipitation, solar radiation, annual average temperature, maximum temperature and minimum temperature. Our results indicated that the variation of the five climate variables at different periods showed obvious regional differences. (1) Compared with the base period of 1970-1999, precipitation increased during the three future periods and reached peak value in 2080s. The area of precipitation increase is mainly located in the latitude of 20 degrees, such as Niger, Chad, Libya, etc. and the maximum increase is around 4.5%. (2) The area of increased solar radiation is mainly located in north and south ends of Africa continents, especially in high altitude area, i.e. Atlas mountain and Plus plateau and the maximum increase is 0.04%. (3) Over the next 90 years, the annual average temperature, maximum temperature and minimum temperature are all increasing and reach the maximum value by 2080s, increasing 5 ℃,4.3 ℃,5.1 ℃ at 2020s, 2050s, 2080s, respectively. The temperature is significantly increased compared with the base period of 1970-1999, but increased less in the coastal area due to the cold current. The high increase of temperature might play negative role in agriculture production and regional security.

1 引言

随着气候变化及其影响的日渐显现,气候变化已经受到国际社会的广泛关注和重视[1-2]。非洲面积3020万km2(包括附近岛屿),是世界第二大洲。由于其地理位置横跨赤道两侧,州内有多个气候带,且气候带分布呈南北对称状。其气候特点是高温、少雨、干燥;州内气温随纬度增加而降低。全洲年平均气温在20 ℃以上的地带约占总面积的95%,区域气候差异大且对气候变化敏感。IPCC第五次评估报告表明,非洲是本世纪最可能变暖的地区之一[3]。气候变化对非洲农业生产和粮食安全的影响受到广泛关注[4-8]。由于气候变化引起的气温、降水等的变化,使非洲许多地区农民种植的传统作物严重减产[9-10]。预计2050年非洲大部分地区由于增暖或干旱将使得粮食产量减产将愈演愈烈,预计非洲总体的粮食产量将下降10%~20%[11]。而多数非洲国家粮食供应不足和贫困将进一步加大该地区的粮食危机和饥饿风险[12]。气候变化不仅影响着该地区的粮食安全,还会对生物多样性、海岸系统和社会公共安全造成影响[13]。例如,受气候变化影响,在非洲的一些河流系统,如非洲南部的林波波河,北非的尼罗河和西非的沃尔特河,降水将少于当前水平,粮食生产将受到冲击,国际紧张局势也将因此加剧。由于气温上升,乞力马扎罗山上的大部分冰盖已经融化,如果这种情况持续进行,15年后山上的冰盖将消失;尼罗河、赞比西河以及尼日尔河等大河同样出现大幅的水位下降;在非洲东、南部由于气候变化引起的干旱和降水减少也将导致很多野生动植物灭绝[14]。因而,定量评估非洲气候要素的时空演变特征,对于评估气候变化对非洲影响和保障地区安全,建立气候变化下的适应机制具有重要作用。

2 数据与研究方法

2.1 RCP4.5路径数据

本文采用IPCC最新发布的HadGEM2模式输出的RCP4.5路径数据[15-16]。相对于IPCC第三次评估报告和第四次评估报告发布的SRES系列情景数据,IPCC第五次评估更全面的考虑应对气候变化的各种政策对未来排放的影响,并在更大范围内研究潜在气候变化和不确定性,因而开发了以稳定浓度路径(RCPs)为特征的新情景。RCPs是指“对辐射活性气体和颗粒物排放量、浓度随时间变化的一致性预测,作为一个集合,它涵盖广泛的人为气候强迫”[17]。IPCC第五次评估识别了4类RCPs,包括:RCP8.5、RCP6、RCP4.5和RCP3-PD(采用RCP2.6,并确定利用4个社会经济发展和综合评估模型(Integrated Assessment Models, IAMs)提供每种路径下的辐射强迫、温室气体(气溶胶、化学活性气体)排放和浓度及土地利用/覆盖的时间表。由于四类情景的路径形状和排放目标均不同,而在中端路径中,RCP4.5的优先性大于RCP6[18]。因而本研究选用RCP4.5 路径数据来进行研究。RCP4.5的路径形状为不超过目标水平达到稳定,在RCP4.5 情景下,辐射强迫将在2100年达到4.5W/m2,3类温室气体(即CO2、CH4和N2O)排放量将在2040年达到峰值,温室气体浓度将在2070年趋于稳定,2100年之后稳定在 650×10-6 CO2当量,到2100年预计升温2.4~5.5 ℃(平均3.6 ℃)[19]

2.2 研究方法

本文选取5个主要气候变量作为研究对象,分别是:年降水量(Pr)、净辐射(Rsds)、年平均温度(Ta)、年最高温度(Tmax)、年最低温度(Tmin)。为研究未来RCP4.5情景下,各气候变量的时空变化,选取1970-1999做为基准时段(baseyr),基准时段是HadGEM2模式输出的历史值; 2020s,2050s,2080s分别代表由HadGEM2模式输出的RCP4.5情景下2010-2039年、2040-2069年、2070-2099年3个时段与基准时段1970-1999年的相对变化。基于时间序列和空间分析对上述变量相对于基准时段的时空变化加以分析。需要说明的是:对于上述各变量的运算中,平均温度、年最高温度、年最低温度等的运算均为绝对误差(Absolute Error,AE),而年降水量,净辐射的运算则为相对误差(Relative Error,RE)。数据分辨率为0.5º×0.5º,计算所需数据均为日步长。具体计算公式如式(1)、(2)所示。
$$ AE=Y_{future}-Y_{baseyr} \ \ (1) \\ RE=(Y_{future}-Y_{baseyr})/Y_{baseyr} \times 100\% \ \ (2)$$
式中:Yfuture为未来不同时段下的值;Ybaseyr则为基准时段1970-1999年基准值。

3 结果与讨论

3.1 降水时空变化格局

图1(a)-(d)为HadGEM2模式RCP4.5情景不同时段降水时空格局,由图可以看出,非洲地区降水量从赤道向南北两侧递减,南北大致对称分布,呈现出明显的纬度地域分布规律。1970-1999基准时段非洲南北大部地区年降水量不足1000 mm,近赤道的热带雨林气候区,受赤道气压带控制,对流运动强烈,再加上几内亚弯暖流的增温增湿,年降水量较高,如靠近几内亚弯的利伯维尔、喀麦隆等地区,年总降水量可≥3000 mm。相对于基准时段,不同时段以及不同地区的增加幅度有所差异,降水量增加较多的区域主要集中在热带沙漠气候区的中部,恩内迪高原及其周边,涉及乍得、尼日尔、利比亚等国家;也有部分地区降水量减少,主要集中在迈尔祖格沙漠地区;其它地区降水变化不明显。2020s(2010-2039年),降水增加最大达到 3.5 mm左右,主要集中在尼日尔、乍得等地区;到2050s(2040-2069年)降水增加的幅度和地区均小于2020s,增加的地区仍主要集中在尼日尔、乍得等地,;在2080s(2070-2099年),部分地区的降水量增至最高值,但是增加的地区少于2020s。
Fig. 1 Temporal and spatial patterns of precipitation at different future periods in Africa under RCP4.5

图1 非洲HadGEM2模式RCP4.5情景不同时段降水时空格局

3.2 辐射时空变化格局

图2(a)-(d)为HadGEM2模式RCP4.5情景不同时段辐射变化的时空格局,在1970-1999年的基准时段太阳辐射的最低值在赤道一带,逐渐向南北两侧递增;热带草原气候区和热带沙漠气候区,由于分别受赤道低气压带和高气压带的控制,再加上信风带的影响,辐射明显高于其它地区。热带草原气候区的国家主要包括:安哥拉、纳米比亚、博茨瓦纳、赞比亚等国。热带沙漠气候区的国家主要包括毛里塔尼亚、马里、尼日尔、乍得、苏丹。在2020s,非洲大部分地区的太阳辐射出现增加,特别是高海拔地区,如撒哈拉沙漠以北的阿特拉斯山脉附近,加丹加高原、马达加斯加岛等地。相对于基准时段,赤道中心大部地区辐射值在增加,如中非、喀麦隆和苏丹南部地区;辐射减少的地区移向10°N附近,减小幅度在0.03%以内,如上几内亚高原和乍得盆地;而辐射增加最多的地方集中在莫桑比克海峡以西。在2050s,辐射出现减少的地区在增加,如毛里塔尼亚、马里、尼日尔、埃塞俄比亚等地;而撒哈拉沙漠以北大部地区的辐射增加值小于2020s。到了2080s,太阳辐射变化趋势与2050s相似,但辐射减少地区多于2050s,几乎整个热带沙漠气候区的辐射都在减少;而且辐射值增加的地区也多于2050s,坦桑尼亚、赞比亚等地的辐射增加值达最大(0.03%)。
Fig. 2 Temporal and spatial patterns of solar radiation at different future periods in Africa under RCP4.5

图2 非洲HadGEM2模式RCP4.5情景不同时段辐射强迫时空格局

3.3 地表温度时空变化格局

图3(a)-(d)为HadGEM2模式RCP4.5情景不同时段非洲地区年平均气温变化的时空格局,在1970-1999年的基准时段大部分地区的平均气温在25 ℃以上,最高平均气温出现在15°N左右的毛里塔尼亚、马里、尼日尔、乍得、苏丹等地;赤道以北地区的年平均气温明显高于南部地区。到了2020s,非洲地区绝大部分地区的平均气温为增加趋势,最高达2.63 ℃,主要集中在10~30 °N之间,如埃及、利比亚、阿尔及利亚等地。在2050s,非洲地区绝大部分地区的平均气温仍然在持续增加,且增温幅度增加,最高达4.3 ℃,增温最高地区仍然集中在10~30 °N之间;南部地区的增温幅度明显高于2020s,安哥拉和刚果等地的增温幅度超过3 ℃。在2080s,非洲整个地区的最高增温已经达到5 ℃以上,在赤道以南的安哥拉、纳米比亚等地,平均气温也有显著的增加,增幅在3 ℃以上;增温较多的地区除了包括前2个阶段增幅较大的0~30°N之间外,赤道以南热带草原气候区的刚果、安哥拉、纳米比亚等。
Fig. 3 Temporal and spatial patterns of annual average temperature at different future periods in Africa under RCP4.5

图3 非洲HadGEM2模式RCP4.5情景不同时段平均温度时空格局

Fig.4 Temporal and spatial patterns of maximum temperature at different future periods in Africa under RCP4.5

图4 非洲HadGEM2模式RCP4.5情景不同时段平均最高温度时空格局

Fig. 5 Temporal and spatial patterns of minimum temperature at different future periods in Africa under RCP4.5

图5 非洲HadGEM2模式RCP4.5情景不同时段平均最低温度时空格局

图4图5分别为HadGEM2模式RCP4.5情景不同时段平均最高气温与最低气温变化的时空格局,同年平均气温的分布一样,1970-1999年的基准时段最高气温地区仍集中10~30°N之间,赤道以北的最高气温大于赤道以南。撒哈拉沙漠附近地区的最高气温达40 ℃以上,有的地区甚至高于50 ℃。而南北两端的阿特拉斯山脉和德拉肯斯山脉附近由于海拔较高,年最高气温在20±2 ℃。相较于基准时段,最高气温在2020s、2050s和2080s均有显著增加,随着时间的推移,气温增幅也依次变大。增幅较大的地区多集中在撒哈拉沙漠以北和比耶高原以南,近赤道地区气温的增幅较小。与平均气温一样,近莫桑比克海峡以西的大部地区增温较小,这是由于受到近海寒流的影响,起到了降温的作用。最低气温的变化格局与平均气温基本一致,增加幅度在2080s达到最大。但在部分区域有所差异,例如不仅北部地区的增温幅度明显高于南部,近赤道地区的增温幅度也高于南部地区,整个非洲地区未来90年最低气温的平均增幅比最高气温高1 ℃。
最低气温的变化格局与平均气温和最高气温基本一致,在2020s增温地区多出现在10°N以北,随着时间的推移,增温地区扩散到赤道以南,增温区域也逐渐增多。2020s、2050s、2080s的最大增温幅度分别达到:3.2、4.2、5.1 ℃。但各阶段增温的区域分布与年平均气温的增温区域分布类似,不同于最高气温的增温区域分布。此外,区域分异的差异还表现在北部地区的增温幅度明显高于南部,近赤道地区的增温幅度也高于南部地区,整个非洲地区未来90年最低气温的平均增幅比最高气温高1 ℃。

4 结论

本文利用IPCC最新发布的情景数据,采用时间序列分析和空间分析相结合,研究了非洲大陆未来90年包括降水、辐射、平均气温、最高气温、最低气温等主要气候变量的时空变化格局。研究结果表明:相较于1970-1999年基准时段,降水和辐射在2080s增至峰值,降水增加地区集中在热带沙漠气候区的中部,恩内迪高原及其周边,涉及乍得、尼日尔、利比亚等国家,最高增幅达4.5%;也有部分地区降水量减少,主要集中在迈尔祖格沙漠地区;其它地区降水变化不明显。辐射的增加区域主要集中在赤道中心和非洲大陆的南北两端,尤其是高海拔地区,如撒哈拉沙漠以北的阿特拉斯山脉附近,加丹加高原等地;随着时间的推移,辐射减少的地区在增多,多集中在热带沙漠气候区。整个非洲大陆未来90年的气温增加明显,包括平均气温、最高气温、最低气温。气温增幅由2020s、2050s、2080s依次递增,到2080s达到最大值。平均气温、最高气温、最低气温的最大增幅分别达到5、4.3、5.1 ℃。总体上,未来90年非洲大陆的气候资源较1970-1999年基准时段明显增多,但靠近海域的沿海地区增温较小,这是由于受到近海寒流的影响,起到了降温的作用。

The authors have declared that no competing interests exist.

[1]
IPCC. Climate Change 2007: The physical science basis, contribution of working group I to the Fourth Assessment report of the intergovernmental panel on climate change[M]. Cambridge, United Kingdom and New York, USA:Cambriage University Press, 2007:996.

[2]
IPCC. Renewable energy sources and climate change mitigation[M]. Ottmar E, Ramón P M, Youba S, et al. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2011.

[3]
IPCC, Climate Changes 2013: The Physical science basis[M]. Stocker T F, Qin D, Plattner G K, et al. USA: Cambridge University Press, 2013.

[4]
Jones P G, Thornton P K.The potential impacts of climate change on maize production in Africa and Latin America in 2055[J]. Global Environmental Change, 2003,13(1):51-59.The impacts of climate change on agriculture may add significantly to the development challenges of ensuring food security and reducing poverty. We show the possible impacts on maize production in Africa and Latin America to 2055, using high-resolution methods to generate characteristic daily weather data for driving a detailed simulation model of the maize crop. Although the results indicate an overall reduction of only 10% in maize production to 2055, equivalent to losses of $2 billion per year, the aggregate results hide enormous variability: areas can be identified where maize yields may change substantially. Climate change urgently needs to be assessed at the level of the household, so that poor and vulnerable people dependent on agriculture can be appropriately targeted in research and development activities whose object is poverty alleviation.

DOI

[5]
Schlenker W, Lobell D B.Robust negative impacts of climate change on African agriculture[J]. Environmental Research Letters, 2010,5:014010.Elsevier’s Scopus, the largest abstract and citation database of peer-reviewed literature. Search and access research from the science, technology, medicine, social sciences and arts and humanities fields.

DOI

[6]
Müller C, Cramer W, Hare W L, et al. Climate change risks for African agriculture[J]. Proceedings of the National Academy of Sciences, 2011,108(11):4313-4315.

PMID

[7]
Walker N J, Schulze R E.Climate change impacts on agro-ecosystem sustainability across three climate regions in the maize belt of South Africa[J]. Agriculture Ecosystem Environment, 2008,124:114-124.From the present and nine plausible future climate scenarios which were modelled using CERES-Maize over a 44-year period, it is shown that climatic changes could have major negative effects on the already drier western, and therefore more vulnerable, areas of the South African Highveld. An increase in temperature increases the variability of yields in the relatively moist Piet Retief area (MAP 903聽mm), while at the more sub-humid Bothaville, with a MAP of only 552聽mm, the inter-annual variability remains the same but mean yield over 44 seasons is reduced by 30%. A simulated increase in temperature coupled with a doubling of CO 2 increases the rate of soil organic nitrogen depletion from the agro-ecosystem. Therefore, long-term perspectives in regard to human well-being and ecological integrity need to be applied to policies and actions for sustainability of both commercial and smallholder agro-ecosystems, particularly, in the western Highveld.

DOI

[8]
Dinar A.Climate change and agriculture in Africa: Impact assessment and adaptation strategies[J]: Earthscan/James & James, 2008.As climate change has emerged as a significant threat, there is much concern about how vulnerable agricultural communities will adapt, particularly as global population continues to rise. Much of the current lack of productivity and economic marginalization of African agriculture arises from global trade regimes that give a competitive advantage to Western farmers, from low use of agricultural inputs, and from a dearth of infrastructure and services for the agriculture sector. For centuries, African farmers have used a wide variety of risk-reducing livelihood strategies, including diversifying income sources, switching crops, and investing in marketing. However, improving their productivity to “modern” levels has remained a distant dream, resulting in a continual reduction in investment in the sector over the past five decades.

DOI

[9]
Seo S N, Mendelsohn R, Dinar A, et al. A ricardian analysis of the distribution of climate change impacts on agriculture across agroecological zones in Africa[J]. Environment Resource Economy, 2009,43:313-332.This paper examines the distribution of climate change impacts across the sixteen Agro-Ecological Zones (AEZs) of Africa. We combine net revenue from livestock and crops and regress total net revenue on a set of climate, soil, and socio-economic variables with and without country fixed effects. Although African crop net revenue is very sensitive to climate change, combined livestock and crop ne...

DOI

[10]
Thornton P K, Jones P G, Alagarswamy G, et al. Adapting to climate change: agricultural system and household impacts in east Africa[J]. Agricultural System, 2010,103:73-82.The East African region exhibits considerable climatic and topographic variability. Much spatial and temporal variation in the response of different crops to climate change can thus be anticipated. In previous work we showed that a large part of this variation can be explained in terms of temperature and, to a lesser extent, water effects. Here, we summarise simulated yield response in two crops that are widely grown in the region, maize and beans, and investigate how the impacts of climate change might be addressed at two levels: the agricultural system and the household. Regionally, there are substantial between-country and within-system differences in maize and bean production responses projected to 2050. The arid-semiarid mixed crop-livestock systems are projected to see reductions in maize and bean production throughout most of the region to 2050. Yields of these crops in the tropical highland mixed systems are projected to increase, sometimes substantially. The humid-subhumid mixed systems show more varied yield responses through time and across space. Some within-country shifts in cropping away from the arid-semiarid systems to cooler, higher-elevation locations may be possible, but increased regional trade should be able to overcome the country-level production deficits in maize and beans caused by climate change to 2050, all other things being equal. For some places in the tropical highlands, maize and bean yield increases could have beneficial effects on household food security and income levels. In the other mixed systems, moderate yield losses can be expected to be offset by crop breeding and agronomic approaches in the coming decades, while more severe yield losses may necessitate changes in crop types, movement to more livestock-orientated production, or abandonment of cropping altogether. These production responses are indicative only, and their effects will be under-estimated because the methods used here have not accounted for increasing weather variability in the future or changes in the distribution and impacts of biotic and other abiotic stresses. These system-level shifts will take place in a context characterised by high population growth rates; the demand for food is projected to nearly triple by the middle of this century. Systems will have to intensify substantially in response, particularly in the better-endowed mixed systems in the region. For the more marginal areas, the variability in yield response, and the variability in households' ability to adapt, suggest that, even given the limitations of this analysis, adaptation options need to be assessed at the level of the household and the local community, if research for development is to meet its poverty alleviation and food security targets in the face of global change.

DOI

[11]
Lobell D B, Banziger M, Magorokosho C, et al. Nonlinear heat effects on African maize as evidenced by historical yield trials[J]. Nature Climate Change, 2011,1(1):42-45.

[12]
Hope K R.Climate change and poverty in Africa[J]. International Journal of Sustainable Development World Ecology, 2009,16:451-461.Africa is most vulnerable to climate change, although it makes the least contribution to factors that result in global and regional climatic changes. High levels of vulnerability and low adaptive capacity across the continent have been linked to, among other things, poverty. This paper discusses and analyses the relationship between climate change and poverty in Africa. It investigates the rela...

DOI

[13]
Burke M B, Miguel E, Satyanath S, et al. Warming increases the risk of civil war in Africa[J]. Proceedings of the National Academy of Sciences, 2009,106:20670-20674.Armed conflict within nations has had disastrous humanitarian consequences throughout much of the world. Here we undertake the first comprehensive examination of the potential impact of global climate change on armed conflict in sub-Saharan Africa. We find strong historical linkages between civil war and temperature in Africa, with warmer years leading to significant increases in the likelihood of war. When combined with climate model projections of future temperature trends, this historical response to temperature suggests a roughly 54% increase in armed conflict incidence by 2030, or an additional 393,000 battle deaths if future wars are as deadly as recent wars. Our results suggest an urgent need to reform African governments' and foreign aid donors' policies to deal with rising temperatures.

DOI PMID

[14]
詹世明. 应对气候变化:非洲的立场与关切[J].西亚非洲,2009(10):42-49.气候变化及其引起的消极影响已是不争的事实。非洲对形成气候变化的责任最小,却是受影响程度 最深的地区。气候变化将对非洲的农业、水资源、沿海地区、生物多样性、人类健康和国家安全造成不可估量的损失,并最终影响宏观经济和社会的发展。非洲国家 应对气候变化共同立场的形成,有利于非洲在未来的国际气候谈判中争取主动,并有效应对气候变化所引起的消极影响。非洲国家将在坚持原有气候原则和机制的基 础上,保证自身作为发展中国家的发展权利,争取更多的资金和先进技术转让。气候变化对非洲既是挑战,也是难得的发展机遇。

DOI

[ Zhan S M.To meet climate changes: The African stance and concerns[J]. West Asia and Africa, 2009,10:42-49. ]

[15]
Riahi K, Nakicenovic N.Greenhouse gases - integrated assessment[J]. Technological Forecasting and Social Change, 2007,74(7):234.

[16]
Clarke L E, Edmonds J A, Jacoby H D, et al. Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1A of synthesis and assessment product 2.1 by the US Climate Change Science Program and the Subcommittee on Global Change Research[J]. Department of Energy, Office of Biological & Environmental Research, Washington, DC, 2007:154.This and a companion report constitute one of twenty-one Synthesis and Assessment Products called for in the Strategic Plan for the U.S. Climate Change Science Program. These studies are structured to provide high-level, integrated research results on important science issues with a particular focus on questions raised by decision-makers on dimensions of climate change directly relevant to the U.S. One element of the CCSP's strategic vision is to provide decision support tools for differentiating and evaluating response strategies. Scenario-based analysis is one such tool. The scenarios in this report explore the implications of alternative stabilization levels of anthropogenic greenhouse gases (GHGs) in the atmosphere, and they explicitly consider the economic and technological foundations of such response options. Such scenarios are a valuable complement to other scientific research contained in the twenty-one CCSP Synthesis and Assessment Products. The companion to the research reported here, Global-Change Scenarios: Their Development and Use, explores the broader strategic frame for developing and utilizing scenarios in support of climate decision making.

[17]
Moss R, Babiker M, Brinkman S, et al. Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies[R]. Noordwijkerhout,the Netherlands: IPCC, 2007: 132.

[18]
陈敏鹏,林而达.代表性浓度路径情景下的全球温室气体减排和对中国的挑战[J].气候变化研究进展,2010,6(6):436-442.介绍了政府间气候变化专门委员会(IPCC)为第五次评估报告开发的新情景——代表性浓度路径(RCPs),分析了RCPs情景的内在优势,并描述了4类代表性RCPs(RCP8.5、RCP6、RCP4.5和RCP3-PD)的特征。利用IPCC最新发布的RCPs数据,分析了高端、中端稳定和低端浓度路径下,全球温室气体的排放空间、区域分担和减排成本,并着重探讨了低端路径与全球温度升幅限制在2℃以下目标之间的关系及其给中国带来的主要挑战和应对途径。

DOI

[ Lin M P, Lin E D.Global greenhouse gas emission mitigation under representative concentration pathways scenarios and challenges to China[J]. Advances in Climate Change Research, 2011,6(6):436-442. ]

[19]
Van Vuuren D P, Johannes F, Lamarque J F, et al. Work plan for data exchange between the integrated assessment and climate modeling community in support of Phase-0 of scenario analysis for climate change assessment (representative community pathways)[C]. IPCC, 2008.

文章导航

/