出租车交接班行为识别与时空分布研究
作者简介:唐炉亮(1973-),男,博士生导师,珞珈特聘教授,研究方向为GIS-T、时空数据获取与分析等。E-mail: tll@whu.edu.cn
收稿日期: 2016-06-16
要求修回日期: 2016-08-05
网络出版日期: 2017-02-17
基金资助
国家自然科学基金项目(41571430、41271442、40801155)
Study on Identification and Space-time Distribution Analysis of Taxi Shift Behavior
Received date: 2016-06-16
Request revised date: 2016-08-05
Online published: 2017-02-17
Copyright
在出租车交接班时间段内经常发生打车难,甚至空车拒载的现象,研究出租车交接班行为的时空分布特征不仅能提高出租车运行效率,同时能缓解出租车供需矛盾,方便公众出行。本文采用武汉市出租车GPS轨迹数据,建立了出租车交接班时空序列模式,提出了交接班时空序列模式挖掘与识别方法,分析了交接班事件的时空分布特征,并以车辆区域覆盖强度、区域覆盖密度为指标对交接班停靠点城市资源配置进行了评估。研究结果表明:武汉市出租车交接班集中发生在凌晨1:00-4:00与下午16:00-17:00,下午交接班高峰与晚交通高峰时段有部分重叠,交接班地点比较均匀地遍布中心城区(青山区除外,此区域开发程度较低),武昌区交接班强度最大,江汉区交接班密度最大。此外,结合武汉市2012年出台禁止出租车司机在晚高峰交通时段交接班的规定,探测发现6.5%左右的司机仍存在严重违规交接班行为。
唐炉亮 , 段倩 , 阚子涵 , 李清泉 . 出租车交接班行为识别与时空分布研究[J]. 地球信息科学学报, 2017 , 19(2) : 167 -175 . DOI: 10.3724/SP.J.1047.2017.00167
In the period of taxis taking shift, many city dwellers find it hard to get a taxi or even get turned away in front of vacant ones. Analyzing the spatial and temporal distribution of taxi shift change behavior can improve taxis efficiency, relieve the contradictions of supply and demand of taxi, and facilitate public travelling. This study establishes space-time sequence of taxi shift behavior and puts forward a method to mine and identify taxi shift sequence from GPS trajectory. Furthermore, we adopt taxis′ GPS trajectory data in Wuhan to perform our method. Based on the identified shift events, we analyze the space-time distribution of taxis′ shift behavior and evaluate parking resource allocation for taxis′ shift change by using intensity and density as indicators. The results show that: taxis′ shift behavior in Wuhan peaks in period of 1:00 to 4:00 and 16:00 to 17:00 and the latter peak in the afternoon partially overlaps with evening rush hours, which can introduce the difficulty in taking a taxi; the parking location for taxis taking shift is relatively uniformly distributed throughout the downtown of the city except Qingshan District, which is less prosperous than the others; Wuchang District has the strongest shift intensity and Jianghan District, whose area is the smallest among all the administrative districts, has the greatest shift density. In addition, considering the regulation issued by Wuhan traffic administration in 2012, which prohibits taxi drivers from taking shift in the evening rush hours, it is revealed that about 6.5% of the drivers have serious illegal shift behavior.
Fig. 1 Taxi working and rest mode图1 出租车的工作和休息模式 |
Fig. 2 GPS space-time trajectories of taxi shift event图2 交接班事件的GPS时空轨迹 |
Fig. 3 Space-time sequential pattern of taxi shift图3 出租车交接班行为的时空序列模式 |
Fig. 4 Histogram and fitted Gaussian distribution of the characteristics of taxi shift events图4 交接班事件序列特征直方图与高斯拟合分布 |
Fig. 5 The explanation of unoccupied distance图5 空载距离示意图 |
Fig. 6 The identification procedures of taxi shift event图6 出租车交接班事件识别流程 |
Fig. 7 Temporal distribution of the taxis shift numbers图7 交接班车辆数的时间分布 |
Fig. 8 Spatial distribution of parking location for taxis shift change图8 交接班地点空间分布 |
Fig. 9 Spatial distribution of parking location for taxis shift based on administrative districts图9 基于行政区的交接班地点空间分布 |
Fig. 10 The dynamic of taxis taking shift in 17:00-19:00图10 17:00-19:00内出租车交接班数量变化 |
Fig. 11 Spatial distribution of serious irregular taxi shift change图11 严重违规车辆交接班地点分布 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
[
|
[6] |
[
|
[7] |
|
[8] |
|
[9] |
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
[
|
[18] |
[
|
/
〈 | 〉 |