地理空间分析综合应用

北京地面沉降时空分布特征研究

  • 周超凡 , 1, 2, 3 ,
  • 宫辉力 , 1, 2, 3, * ,
  • 陈蓓蓓 1, 2, 3 ,
  • 郭琳 1, 2, 3 ,
  • 高明亮
展开
  • 1. 三维信息获取与应用教育部重点实验室,北京 100048
  • 2. 城市环境过程与数字模拟国家重点实验室培育基地,北京 100048
  • 3. 首都师范大学资源环境与旅游学院,北京 100048
*通讯作者:宫辉力(1956-),男,博士,研究方向地理信息系统与遥感技术应用。E-mail:

作者简介:周超凡(1990-),女,博士生,研究方向为区域地沉降研究。E-mail:

收稿日期: 2016-03-15

  要求修回日期: 2016-06-02

  网络出版日期: 2017-02-17

基金资助

国家自然科学基金项目(4140010982)

国家自然科学基金重点项目(41130744)

国家自然科学基金面上项目(41171335)

北京市教育委员会科技计划面上项目“浅地表空间利用差异模式下的地面沉降演化特征”

Study of Temporal and Spatial Characteristics of Land Subsidence in Beijing

  • ZHOU Chaofan , 1, 2, 3 ,
  • GONG Huili , *, 1, 2, 3 ,
  • CHEN Beibei 1, 2, 3 ,
  • GUO Lin 1, 2, 3
Expand
  • 1. Key Lab of 3D Information Acquisition and Application, Ministry of Education, Beijing 100048, China
  • 2. The State Key Laboratory Breeding Base of Process of Urban Environment and Digital Simulation, Beijing 100048, China
  • 3. School of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
*Corresponding author: GONG Huili, E-mail:

Received date: 2016-03-15

  Request revised date: 2016-06-02

  Online published: 2017-02-17

Copyright

《地球信息科学学报》编辑部 所有

摘要

20世纪60年代以来,北京市地面沉降不断发展,目前已经形成了东郊八里庄-大郊亭、东北郊-来广营、昌平沙河-八仙庄、大兴榆垡-礼贤和顺义平各庄5个沉降区。本文选取目前地面沉降较为严重的北京市朝阳区、顺义区和通州区作为研究区,利用2003-2010年的47景ASAR影像数据,采用SBAS-InSAR技术获取了研究区的地面沉降监测结果,并分别以SFP点年均沉降速率和各年沉降量作为权重,计算SFP点空间分布中心与方向特征椭圆,定量分析了研究区地面沉降时空特征。结果表明:2004-2010年,北京市地面沉降表现为严重的不均匀沉降,年沉降量最大值由104.04 mm增加到178.83 mm;标准差椭圆长轴与南北方向平行,反映出地面沉降空间发展方向性在南北方向较东西方向明显,椭圆面积由592.25 km2减小到 503.84 km2,表明2004-2010年研究区内发生地面沉降的区域范围变化呈减小趋势,但从沉降量可以发现,北京地面沉降一直处于加重趋势。

本文引用格式

周超凡 , 宫辉力 , 陈蓓蓓 , 郭琳 , 高明亮 . 北京地面沉降时空分布特征研究[J]. 地球信息科学学报, 2017 , 19(2) : 205 -215 . DOI: 10.3724/SP.J.1047.2017.00205

Abstract

Land subsidence in Beijing has developed since 1960s. Five major subsidence areas have formed: Dongjiao Ba Lizhuang-Da Jiaoting, Dong Beijiao-Lai Guangying, Changping Shahe-Ba Xianzhuang, Daxing Yufa-Lixian, and Shunyi-Ping Gezhuang. In this study, we investigated Chaoyang, Shunyi, and Tongzhou Districts, which have experienced relatively serious subsidence, and obtained land subsidence monitoring results using data from 47 ASAR images (2004-2010) and the technology of small baseline subset interferometric synthetic aperture radar (SBAS-InSAR). Weighted by the annual average subsidence rate of SFP points and the subsidence amount of each year, we calculated the spatial distribution center of SFP points and the eigenellipse to quantatively analyze the spatiotemporal characteristics of subsidence in the study area. In 2004-2010, Beijing experienced pronounced uneven subsidence, and annual maximum subsidence increased from 104.04 to 178.83 mm. The long axis of the eigenellipse was parallel to the north-south direction and it indicated that spatial development of land subsidence was more obvious in the north-south direction than that in the east-west direction . The eigenellipse area decreased from 592.25 to 503.84 km2 in 2004-2010. This result indicated that the subsidence area decreased, but the amount of subsidence still suggested increasing subsidence in Beijing.

1 引言

地下水资源的大量开采,使含水层孔隙度逐渐变小,导致有效应力增加,从而直接引发了地面沉降。作为一种常见的地质灾害,地面沉降具有生成缓慢、持续时间长、影响范围广、成因机制复杂和防治难度大等特点,对资源利用、环境保护、经济发展、城市建设和人民生活都会构成较大威胁。北京市城市供水约有2/3来自地下水,近年来随着城市人口急剧增加,城市规模不断扩大,导致城市用水量也大幅增加。目前,北京市地下水开采量约为26×108 m3/a,超采量约为1亿m3,造成地下水水头大幅下降,进而诱发了地面沉降[1]。现有研究资料表明,20世纪60年代以来,北京平原地区地面沉降一直快速发展,并具有连成一片的趋势。例如,北京市的东郊八里庄—大郊亭、东北郊来广营、昌平沙河—八仙庄、大兴榆垡—礼贤、顺义平各庄等地,已经形成了5个较大的地面沉降区,沉降中心累计沉降量分别达到722、565、688、661和250 mm。地面沉降最为快速的区域,地表以每年30~60 mm/a的速度下沉。目前,地面沉降已影响到城市建设的布局与规划,并威胁到百姓的居住安全[2],工厂、居民区楼房墙壁开裂、地基下沉、地下管道工程损坏50余处,同时导致一些建筑物的抗震能力降低和大量测量水准点失准,对城市建设和人民财产安全产生较大影响。
国内外学者对地面沉降监测、地面沉降形成机理等方面开展了大量研究,并取得了较大进展。沉降监测方面,目前主要包括水准测量、分层标、GPS测量以及合成孔径雷达干涉测量技术(InSAR)等。相对于传统的测量方法,InSAR技术可以获取大范围的高精度地表形变信息,其监测精度已达毫米 级[3]。作为InSAR技术的扩展,DInSAR可以通过图像差分技术提取地面形变信息[4],然而,该技术容易受大气误差、轨道误差及地形误差的影响;后期发展起来的PSI技术可以一定程度上解决DInSAR技术的不足[5-8],PSI通过分析具有稳定散射特征的永久散射点(PS点)来提取地表形变信息,但PSI中的PS点选取在非城区或者植被覆盖地区并不理想,会导致地表形变信息提取存在较大误差;与PSI技术相比,小基线干涉测量技术(SBAS-InSAR)方法根据设置时间和空间基线阈值将所获得的SAR数据组合成若干集合,从而大大减弱了空间失相干现象,使形变监测结果更加准确可靠[9-11]。葛大庆等针对重复轨道合成孔径雷达差分干涉测量中的失相干和大气扰动问题,选择短基线干涉像对构成差分干涉纹图集,研究出一种对长时间序列形变场时空变化连续监测的有效算法[12]。张永红等选取干涉点分析技术,详细讨论线性速率相位、高程残差相位和非线性残差相位的去除[13]。在地面沉降演化机理方面,薛禹群认为造成中国地面沉降的成因主要是地下水的长期超量开采以及第四纪以来的活动断裂和构造沉降,呼吁加强工程性沉降机理的研究[14]。张勤采用GPS和InSAR相结合的方法研究西安地面沉降,研究结果表明地面不均匀沉降发生的重要原因是地下水的过量抽取和大规模的施工建设[15-16]。宫辉力等针对北京地面沉降问题,采用InSAR技术、多源遥感技术与水文地质学交叉研究,揭示了地下水演化与地面沉降响应机理,初步探讨了城市地表载荷与地面沉降的关系[17-18]。张学冬等针对煤矿区的非线性地表沉降特征,利用相关目标短基线InSAR技术,分析了矿山地区沉陷在不同开采阶段的地面沉降的特征[19]
区域地面沉降的产生,对京津唐城际轨道、京沪高速铁路沿线等交通工程也带来诸多不利影响。在北京平原的部份沉降区,已经发现工场、居民区楼房墙壁开裂、地基下沉,给人民群众的生产生活造成了巨大损失。对此,本文选取2003-2010年覆盖北京平原地区的47景Envisat ASAR数据,利用小基线集干涉测量技术(SBAS-InSAR)对研究区地面沉降进行监测研究,获取区域地表形变信息,在此基础上,结合GIS中的标准差椭圆方法,从标准差椭圆质心变化、空间分布范围变化、空间分布形状变化和空间分布方向变化4个方面探讨区域地面沉降的时空分布特征以及不均匀性特征,为研究北京地面沉降空间演化趋势提供科学依据。

2 研究区概况及研究方法

2.1 研究区概况

研究区包括北京平原区地面沉降较严重的朝阳区、通州区和顺义区(图1),面积为2397.69 km2,区内的地质构造主要包括黄庄-高丽营断裂、良乡-前门-顺义断裂、南苑-通县断裂等8条断裂;岩性为第四系上更新统冲积相、冲洪积相粉土、黏性土层,浅部底板埋深100 m左右,压缩层厚度从小于50 m到大于80 m不等,含水层岩性以冲洪积形成的细砂、中粗砂为主,隔水层岩性以洪积、湖积的黏性土为主。
Fig. 1 Overview of the study area

图1 研究区概况

2.2 研究方法

2.2.1 小基线集干涉测量技术
小基线集干涉测量技术(SBAS-InSAR)最初由Berardino在2002年提出,原理是将同一研究区内的SAR影像,依据其空间基线和时间基线大小,组合成若干个基线对,首先对基线对进行多视处理,然后进行相位解缠,为了解决这一过程中产生的失相关,Lanari等2004年提出了一个新方法,首先在多视处理时识别出SFP(slow-varying filtered phase)像元,然后再识别出单视的SDFP(Slowly Decorrelating Filtered Phase)像元。Hopper在2007年提出了另一新方法,即直接在单视图像中识别单视的SFP像元,这些单视影像在短时间间隔内相位失相关较小,这使得在处理过程中,被完全失相关像元包围的孤立SFP像元可以被识别出来。本次研究选用Hopper提出的方法,并采用Stanford Method for Persistent Scatters(StaMPS)进行SBAS处理。
处理过程中,选取时间间隔和多普勒频率范围最小的基线对,最大限度地提高干涉图的相干性,选取的图像对,时间基线、空间基线和多普勒频率均低于阈值范围,并且确保基线集间为连续状态,没有孤立的集群,如图2所示。
Fig. 2 Combination of small baseline interferograms

图2 小基线集组对图

StaMPS SBAS利用统计的像元振幅稳定性和相位稳定性信息进行相位分析。在初选了SFP像元作为像元子集后,假设地表形变空间相关的情况下,估计它们的相位稳定性。空间相关特性对每一个SFP像元干涉相位的贡献值可以通过周围像元的带通滤波来评估,包括地表形变相位组分、大气延迟时间变化、轨道误差和空间相关高程误差。空间非相关贡献值,包括空间非相关高程差相位组分和物理中心的像元相位偏差,通过垂直基线的相关性进行评估。将上述2项评估相减得到非相关噪声项 γ x ,即每一个SFP像元的残余相位变化。
γ x = 1 N i = 1 N exp - 1 Ψ x , i - Ψ ˜ x , i - Δ ϕ ^ θ , x , i u (1)
式中: Ψ x , i 是第 i 幅干涉图中第 x 个像元的缠绕相位; Ψ ˜ x , i Ψ x , i 的空间相关组分估计; Δ ϕ ^ θ , x , i u 是视角误差的空间非相关组分估计; N 为干涉影像的个数。基于误SFP像元的百分比计算每个选取像元 γ x 的阈值,本文 γ x 的阈值为0.7。
2.2.2 标准差椭圆方法
标准差椭圆最早由Lefever在1926年提出,用于揭示地理要素的空间分布特征[20-22]。利用标准差椭圆可以概括要素的空间分布[23],并识别地理现象的趋势方向,长轴方向反映其在二维空间上展布的主趋势方向,短轴代表其在次要方向上偏离重心的程度[24]。其工作原理是以地理要素空间分布的平均位置为中心,分别计算其在X方向和Y方向上的标准差,以此定义包含要素分布的椭圆的轴[25]。使用该椭圆可以查看要素的分布是否被拉长,并由此而具有特定方向,因此,中心、长轴、短轴、方位角均为标准差椭圆的基本参数[26]
本文采用加权标准差椭圆方法,分别以平均沉降速率和各年沉降量作为权重,计算SFP点空间分布的加权标准差椭圆,从多个角度(质心、长轴、短轴/长轴和方位角)分析地面沉降的空间演化趋势。SFP点的空间分布反应区域地面沉降的空间演化趋势,如果区域地面沉降为均匀地面沉降,即SFP点之间没有差异,这时SFP点的空间分布形态应为标准差圆。正是各点之间的差异,使得SFP点的空间分布形态表现为标准差椭圆。椭圆的中心、长轴、短轴和方位角是标准差椭圆的基本参数。计算公式为:
SD E x = i = 1 n ( x i - X ̅ ) 2 n SD E y = i = 1 n ( y i - Y ̅ ) 2 n (2)
式中: x i y i 是SFP点 i 的坐标; X ̅ , Y ̅ 表示SFP点的平均中心; n 表示SFP点的总数。旋转角计算为:
tanθ = A + B C A = i = 1 n x ˜ i 2 - i = 1 n y ˜ i 2 B = i = 1 n x ˜ i 2 - i = 1 n y ˜ i 2 2 + 4 i = 1 n x ˜ i y ˜ i 2 C = 2 i = 1 n x ˜ i y ˜ i (3)
式中: x ˜ i y ˜ i xy 坐标与平均中心的偏差。X轴和Y轴的标准差为:
σ x = i = 1 n x ˜ i cosθ - y ˜ i sinθ 2 n σ y = i = 1 n x ˜ i sinθ - y ˜ i cosθ 2 n (4)
式中: θ 为椭圆方位角,表示正北方向顺时针旋转到椭圆长轴所形成的夹角; σ x σ y 分别为沿x轴和y轴的标准差。

3 结果与分析

3.1 基于SBAS-InSAR的地面沉降监测信息获取

数据源为2003-2010年47景C波段Envisat ASAR影像,影像分辨率为30 m,设定时间基线阈值为300 d,空间垂直基线阈值为300 m,从而生成了46个干涉像对组合(表1),前期处理包括影像配准,地形相位去除和干涉图的生成,其中地形相位的去除选用美国航天飞机测图任务(SRTM)获取的分辨率为90 m的DEM数据。
Tab. 1 Combination of small baseline interferograms

表1 基线组对表

编号 时间1 时间2 编号 时间1 时间2
1 2003-06-18 2004-04-28 24 2008-10-29 2009-01-07
2 2003-11-05 2004-02-18 25 2009-03-18 2009-09-09
3 2003-12-10 2004-02-18 26 2009-07-01 2009-08-05
4 2004-01-14 2004-12-29 27 2009-08-05 2009-10-14
5 2004-03-24 2004-09-15 28 2009-09-09 2010-04-07
6 2004-04-28 2004-07-07 29 2010-01-27 2010-05-12
7 2004-07-07 2004-08-11 30 2010-03-03 2010-08-25
8 2004-09-15 2004-10-20 31 2010-04-07 2010-06-16
9 2004-12-29 2005-03-09 32 2010-05-12 2010-06-16
10 2005-03-09 2005-12-14 33 2010-07-21 2010-08-25
11 2006-08-16 2007-01-03 34 2004-04-28 2004-01-14
12 2006-10-25 2007-02-07 35 2004-10-20 2004-12-29
13 2007-01-03 2007-09-05 36 2004-02-18 2004-04-28
14 2007-02-07 2007-04-18 37 2005-12-14 2007-01-03
15 2007-06-27 2007-08-01 38 2008-04-02 2008-06-11
16 2007-09-05 2007-11-14 39 2008-08-20 2008-10-29
17 2007-10-10 2008-02-27 40 2009-01-07 2009-07-01
18 2007-11-14 2008-04-02 41 2010-05-12 2010-03-03
19 2007-12-19 2008-02-27 42 2007-04-18 2007-06-27
20 2008-05-07 2008-06-11 43 2007-08-01 2007-10-10
21 2008-06-11 2008-07-16 44 2008-02-27 2008-09-24
22 2008-07-16 2008-08-20 45 2009-10-14 2010-03-03
23 2008-09-24 2008-12-03 46 2008-12-03 2008-10-29
利用SBAS-InSAR监测到的地表形变信息,基于ArcGIS空间分析平台,选取空间地统计Kriging方法对SFP点的形变速率进行空间插值,得到北京朝阳区、顺义区和通州区年地面沉降速率分布图(图3(a))。由图3(a)可知,2004-2010年北京地面沉降速率空间分布差异性很大,沉降不均性较强,区域内形成多个沉降漏斗,最大年沉降速率达到107.27 mm/a。以往研究结果表明,超量开采地下水是引起北京地面沉降发生的主要因素,结合地下水水位等值线(2004-2010年)与利用SBAS-InSAR监测到的地表形变信息,综合分析地面沉降演化趋势与地下水流场的响应关系,将2004-2010年地下水水位等值线构建TIN后,采用栅格图形运算方法,获取7年间地下水流场动态变化,如图3(b)所示。从图3(b)可发现,2004-2010年研究区地下水水位呈现下降趋势,地下水降落漏斗主要分布在朝阳区和顺义区,而从图3(a)地面沉降速率分布中可以发现,朝阳区和顺义区地面沉降演化趋势明显,说明地下水流场变化与地面沉降响应发展具有较好的一致性。
Fig. 3 Maps of annual mean land subsidence rate and underground water level trend in the study area

图3 年均地面沉降速率与地下水位趋势图

Fig. 4 The map of ground subsidence rate classification

图4 地面沉降速率分类图

在研究地面沉降速率空间演化趋势基础上,采用自然分类法,将地面沉降速率分成7类(图4),统计得到各类沉降速率的面积比例和在此沉降区间内的SFP点个数(表2)。从表2可发现,第5类地面沉降速率(-29.67~ -22.00mm/a)的区域面积最大,达到860.52 km2,面积比例为36.12%。而地面沉降速率区间在-107.27~ -69.33 mm/a内的区域面积最小,只占总区域的1.89%,区域面积为45.08 km2。地面沉降速率处于-29.67 ~ -22.00 mm/a的SFP点个数达到31 830个,而地面沉降速率在-107.27 ~ -69.33 mm/a的SFP点个数为3338个。整体而言,地面沉降速率的分布不均匀性较大,即不均匀沉降演化趋势明显。
Tab. 2 Subsidence rate classification anddistribution of SFP points

表2 地面沉降速率分类及SFP点分布

编号 沉降速率
类别
沉降速率区间
/(mm/a)
面积比例
/%
SFP点
个数
1 第1类 -107.27 ~ -69.33 1.89 3338
2 第2类 -69.33 ~ -51.85 4.85 7482
3 第3类 -51.85 ~ -39.05 9.48 12 794
4 第4类 -39.05 ~ -29.67 25.33 253 32
5 第5类 -29.67 ~ -22.00 36.12 31 830
6 第6类 -22.00 ~ -8.78 19.71 22 368
7 第7类 -8.788 ~ 1.44 2.59 5492

3.2 SBAS-InSAR监测结果验证

本文选取2009-2010年16个水准点的观测值对SBAS-InSAR处理结果进行验证(图5)。2010年,2种测量结果最大误差为7.45 mm,最小误差为2.10 mm;2009年,2种测量结果最大误差为 10.04 mm,最小误差为0.94 mm,均小于1 cm。产生误差的原因主要是由于SFP点所处位置与水准点位置存在一定偏差。但在置信度95%条件下,相关系数分别达到了0.991和0.992(p=0.05),说明二者具有很好的一致性,SBAS-InSAR监测结果较准确。
Fig. 5 Comparison of subsidence results between spirits leveling and SBAS-InSAR techniques

图5 水准测量与SBAS-InSAR监测结果比较图

3.3 地面沉降演化趋势分析

利用GIS空间分析技术,以SFP点2004-2010年的平均沉降速率作为权重,计算SFP点空间分布中心与分布的方向特征。均值中心是所有SFP点的平均x,y坐标。标准差椭圆既可反映要素空间分布中心,又能识别分布方向趋势,椭圆的长轴为空间分布点(SFP点)最多的方向,短轴为分布最少的方向。
图6所示,地面沉降主要发生在东四环与东六环之间,中心位置为东经116.62°、北纬39.94°,位于东五环和东六环之间;标准差椭圆长轴方向覆盖到北六环和南六环,而短轴方向向西覆盖到东四环,向东则覆盖到东六环外,分布中心偏向东五环和东六环中间位置。东五环到东六环中心区域,地面沉降发展较严重。从行政区域上,地面沉降主要发生在朝阳区东南部、通州区西北部和顺义区西南部地区。标准差椭圆长轴与南北方向平行,反映了地面沉降空间发展的南北方向性延展趋势比其他方向延展趋势更加明显。标准差椭圆之内的SFP点为53 929个,占总SFP点的49.6%,椭圆之外的SFP点为54 682个,占总SFP点的50.4%。
Fig. 6 The characteristics map of mean center and directional distribution of SFP points

图6 SFP点空间分布中心与分布方向特征图

在获得2004-2010年平均地面沉降速率空间分布特征椭圆的基础上,同样采用加权标准差椭圆方法,将地面沉降量作为权重得到2004-2010年各年地面沉降量空间分布特征椭圆,如图7所示, 2004-2010年北京地面沉降一直处于加重趋势,主要沿东南方向发展,在2004年,地面沉降最大值为104.04 mm,而到2010年地面沉降增加到 178.83 mm。在此基础上,统计各年椭圆面积和SFP点个数(表3)可以发现,2004-2010年,地面沉降空间分布特征椭圆大小整体变化较小,但各年间均有变化。从图7中可发现,椭圆长轴方向变化较大,表明2004-2010年地面沉降的区域整体变化较小,但地面沉降的发展方向趋势变化较大。在此基础上,从标准差椭圆的重心变化、椭圆的空间分布范围、分布形状和分布方向4个方面分析地面沉降空间演化趋势。
Fig. 7 The maps of spatial characteristics evolution of land subsidence from 2004 to 2010

图7 2004-2010年地面沉降空间特征演化图

Tab. 3 SDE area and SFP points from 2004 to 2010

表3 2004-2010年椭圆面积和SFP点个数情况表

年份
2004 2005 2006 2007 2008 2009 2010
SFP点数/个 35 543 38 819 34 574 33 185 30 527 33 287 29 981
椭圆面积/km2 592.25 654.66 576.74 551.87 497.9 563.65 503.84
3.3.1 地面沉降重心变化
2004-2010年,朝阳区、通州区和顺义区SFP点地面沉降中心迁移轨迹及距离变化如图8表4所示。2004年,标准差椭圆的中心坐标为116.594°E,39.968°N;2010年,标准差椭圆的中心坐标为116.61°E,39.93°N。朝阳区、通州区和顺义区SFP点重心自2004年总体向南移动,其中,2004-2006年主趋势为向东南方向移动,移动距离为2009.03 m,2006-2007年主趋势为向北方向移动,移动距离为3756.77 m,2007-2008年又成为向南方向移动,移动距离为3762.84 m,而2008-2009年向北方向移动,移动距离为3233.10 m,2009-2010年主趋势成为向南方向移动,移动距离为3862.90 m。移动距离基本呈现增大趋势,这说明不均匀地面沉降呈明显严重态势并向东南方向发展。地面沉降重心在朝阳区东部不断变化,表明地面沉降一直处于发展态势。根据图3(b)可以发现,重心所处位置地下水水水位整体呈下降趋势,研究表明,朝阳区作为北京地下水主要开采区,由于地下水水位的滞后性以及研究区处于复杂的地质环境下导致地面沉降的重心产生了变化。
Fig. 8 Changes in center of the SDE

图8 标准差椭圆质心变化图

Tab. 4 Centroid movement distance

表4 质心移动距离变化表

年份 X Y 移动距离/m
2004 39.96 116.59
2005 39.95 116.60 1790.77
2006 39.93 116.60 218.26
2007 39.97 116.59 3756.77
2008 39.93 116.59 3762.84
2009 39.96 116.60 3233.10
2010 39.93 116.61 3862.90
3.3.2 地面沉降分布范围变化
标准差椭圆中的长轴大小反映了地面沉降分布范围。2004-2010年地面沉降空间分布范围变化如图9所示。由表5可看出,2004-2010年地面沉降空间分布范围变化明显,标准差椭圆长轴由2004年的17 264 m减少到2010年的16 069.51 m。其中2004-2005年,标准差椭圆长轴增大,由2004年的17 264 m增加为2005年的17 722.21m,说明地面沉降空间分布范围变大。2005-2008年,标准差椭圆长轴减小,表明地面沉降空间分布范围呈减弱趋势;2008-2009年,地面沉降空间分布范围明显呈扩大趋势;而在2009-2010年,地面沉降空间分布范围呈现减弱趋势。地面沉降空间分布范围呈现减弱趋势,表明地面沉降空间分布呈现连片趋势,而长期开采地下水导致北京地面沉降处于发展趋势。
Fig. 9 The changes in long axis of the SDE

图9 标准差椭圆长轴变化

Tab. 5 Parameters in long axis of the SDE

表5 标准差椭圆长轴参数表

年份 X Y 长轴/m
2004 39.96 116.59 17 264.00
2005 39.95 116.60 17 722.21
2006 39.93 116.60 16 936.22
2007 39.97 116.59 16 857.27
2008 39.93 116.59 15 800.87
2009 39.96 116.60 16 480.39
2010 39.93 116.610 16 069.51

3.3.3 地面沉降分布差异分析

标准差椭圆短轴与长轴的比值表示SFP点的空间分布形状,比值越接近1,表明SFP点空的间分布主体区域形状越接近于圆,说明地面沉降在各个方向演化较为均匀。2004-2010年,朝阳区、顺义区和通州区SFP点空间分布形状变化(短轴/长轴)如图10所示。2004-2010年SFP点空间分布形状波动明显,在2005-2007年和2009-2010年,短轴/长轴比值明显下降,SFP点空间分布形状表现出明显的扁化趋势,这与其标准差椭圆长轴增长、短轴缩短有关。反映出的地面沉降空间变化为在代表长轴方向的南-北方向上地面沉降发展明显,而在短轴方向上(东-西方向)的地面沉降发展相对减缓。与此相反,在2004-2005年和2007-2009年,短轴/长轴比值明显增大,表明地面沉降在代表长轴方向的南-北方向上地面沉降发展相对减缓,而在短轴方向上(东-西方向)的地面沉降发展明显。
Fig. 10 The changes in short axis/long axis of the SDE

图10 短轴/长轴变化图

3.3.4 地面沉降分布方向变化
标准差椭圆方位角为正北方向与顺时针旋转的长轴之间的夹角,反映地面沉降发展的主趋势方向。2004-2010年,SFP点空间分布方向变化见 图11。2004-2006年,地面沉降空间分布方位角呈明显增大趋势,其空间分布标准差椭圆在空间上表现为较明显的逆时针旋转(方位角由2004年的0.84°增大到2006年的18.98°)。2006-2008年,地面沉降空间分布方位角呈减缓趋势,其空间分布标准差椭圆在空间上表现为顺时针旋转(方位角由2006年的18.98°减小到2008年的10.73°)。
Fig. 11 The changes in azimuthal angle of the SDE

图11 标准差椭圆方位角空间分布变化图

4 结论与展望

本文利用小基线集干涉测量技术(SBAS-InSAR)获取北京市朝阳区、顺义区和通州区 2004-2010年地表形变信息,研究发现区域地面沉降不均匀特征明显。在此基础上,结合标准差椭圆方法,从GIS角度研究地面沉降的空间演化趋势,得到以下结论:
(1)SBAS-InSAR的监测精度较高,通过水准测量的验证,二者的一致性十分显著,在95%置信条件下,二者的相关性达到了0.99。2004-2010年,北京地区地面沉降发展迅速,研究区内地面沉降存在不均匀性,形变的梯度很大,年均沉降量最大达到了107.27 mm/a,沉降面积扩大到2381.9 km。2004年沉降最大值为104.04 mm,而2010年该值达到了178.83 mm。
(2)基于GIS空间分析技术,以SFP点的年均沉降速率作为权重,得到SFP点空间分布中心与分布的方向特征椭圆,椭圆长轴与南北方向平行,反映2004-2010年地面沉降空间发展的南北方向性延展趋势比其他方向延展趋势更加明显。在此基础上,将地面沉降量作为权重得到2004-2010年各年地面沉降量空间分布特征椭圆,从标准差椭圆的重心变化、椭圆的空间分布范围变化、分布形状和分布方向变化4个方面分析发现,2004-2010年,研究区地面沉降的主要发展方向由南北方向向东南-西北方向发展,且加重趋势十分明显。
本文利用SBAS-InSAR技术对ASAR影像进行处理,获取北京朝阳区、通州区和顺义区地面沉降监测信息,初步分析地面沉降的空间分布特征。在此基础上,计算SFP点空间分布中心与方向特征椭圆,定量分析了研究区地面沉降时空特征。由于水文资料的缺乏,本文并没有对区域地面沉降机理进行详细分析,今后将进一步收集相关水文地质资料,运用相关理论探求区域不均匀地面沉降的形成机理。

The authors have declared that no competing interests exist.

[1]
Zhu L, Gong H, Teatini P, et al.Land subsidence due to groundwater withdrawal in the northern Beijing plain, China[J]. Engineering Geology, 2015,193:243-255.ABSTRACT Beijing is an international metropolis, where over-exploration of water resource makes land subsidence becoming more and more serious. The related problems cannot be avoided in the coming years because of the giant increase of population. The aims of this study are to quantify land subsidence over the period 2003 to 2010, grasp the evolution of the process, and investigate the relation with the triggering factors in the northern area of the Beijing plain. Various data, including deep compaction from vertical multiple borehole extensometers, land subsidence from Persistent Scatterer Interferometry and leveling surveys, groundwater levels, hydrogeological setting from wellbores, and Landsat TM image were collected and effectively used to detect the spatial and temporal features of land subsidence and its possible relation with groundwater level changes, compressible layer thickness, and urban development. Results show that land subsidence is unevenly distributed and continuously increased from 2003 to 2010. The average loss of elevation over the monitoring period amounted to 92.5 mm, with rates up to 52 mm/y. The distribution of the subsidence bowl is only partially consistent with that of the groundwater depression cone because of the variable thickness of the most compressible fine deposits. In fact, extensometers reveal that silty-clay layers account for the larger contribution to land subsidence, with the 15 m thick silty-clay layer between 102-117 m depth accounting for about 25% of the total subsidence. Finally, no clear correlation has been observed between the subsidence rates and the increase of the load on the land surface connected to the impressive urban development. This study represents a first step toward the development of a physically-based model of the subsidence occurrence to be used for planning remediation strategies in the northern Beijing plain.

DOI

[2]
宫辉力,张有全,李小娟,等.基于永久散射体雷达干涉测量技术的北京市地面沉降研究[J].自然科学进展,2009,19(11):1261-1266.地面沉降是北京平原区主要地质灾害之一,在过去的几十年中,其沉 降范围和幅度逐年扩大.文中采用永久散射体干涉测量技术(PS-InSAR)进行检测、监测该地区地表形变特征.通过分析时间序列的干涉测量结果发现,该 地区地面沉降存在构造控制的特性,尤其是在北部沉降区.揭示了北京市第四纪顺义凹陷与沙河凹陷地区地面沉降趋势及范围受黄庄-高丽营、南口-孙河断层控 制.同时将PS-InSAR提取的地面沉降等值线与粘性土厚度分区结果对比分析发现,该地区地面沉降多发生在粘性土厚度大于50 m的地段范围内,沉降中心多数位于粘性土厚度大的地区.

DOI

[ Gong H L, Zhang Y Q, Li X J, et al.Land subsidence research in Beijing based on the Ppermanent scatterers InSAR technology[J]. Progress in Natural Science, 2009,19(11):1261-1266. ]

[3]
Galloway D L, Hudnut K W, Ingebritsen S E, et al.Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California[J]. Water Resources Research, 1998,34(10):2573-2585.ABSTRACT Interferometric synthetic aperture radar (InSAR) has great potential to detect and quantify land subsidence caused by aquifer system compaction. InSAR maps with high spatial detail and resolution of range displacement (10 mm in change of land surface elevation) were developed for a groundwater basin (10 3 km 2) in Antelope Valley, California, using radar data collected from the ERS-1 satellite. These data allow comprehensive comparison between recent (1993–1995) subsidence patterns and those detected historically (1926 –1992) by more traditional methods. The changed subsidence patterns are generally compatible with recent shifts in land and water use. The InSAR-detected patterns are generally consistent with predictions based on a coupled model of groundwater flow and aquifer system compaction. The minor inconsistencies may reflect our imperfect knowledge of the distribution and properties of compressible sediments. When used in conjunction with coincident measurements of groundwater levels and other geologic information, InSAR data may be useful for constraining parameter estimates in simulations of aquifer system compaction.

DOI

[4]
刘运明,马全明,陈大勇,等. D-InSAR技术在城市轨道交通变形监测领域的应用[J].都市快轨交通,2014,27(4):62-66.合成孔径雷达干涉测量(D-InSAR)技术作为一种新型的空间大地测量技术,具有全天时、全天候、目标范围广的观测能力,能够获取高精度、高分辨率、大范围的地表形变信息,且不需要地面控制点。将这种新技术引入城市轨道交通工程领域,通过采用小基线集测量(SBAS-DInSAR)技术和精密水准测量方法进行北京地铁6号线沿线地面沉降的监测比对实验,探讨D-InSAR技术在城市轨道交通工程变形监测领域的工程化应用。通过比较测量数据,可以看出D-InSAR沉降监测成果和地面精密水准测量在沉降趋势上有着较高的一致性,因此采用该技术进行城市轨道交通工程变形监测具有一定的可行性。

DOI

[ Liu Y, Ma Q, Chen D, et al.D-InSAR technology applied in the field of deformation monitoring in urban rail transit[J]. Urban Rapid Rail Transit, 2014,27(4):62-66. ]

[5]
Bürgmann R, Hilley G, Ferretti A, et al.Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis[J]. Geology, 2006,34(3):221-224.Using a combination of GPS-measured horizontal velocities of 200 sites and 115,487 range-change rates determined with the permanent scatterer interferometric synthetic aperture radar (InSAR) method in the San Francisco Bay Area, we resolve vertical motions in the region at sub-mm/yr precision. The highest displacement rates are due to nontectonic processes, such as active landslides, subsidence and rebound over aquifers, and rapid settling of unconsolidated sediments along the bay margins. Residual displacement rates are determined by removing the contribution of the GPS-derived horizontal velocity field from the InSAR range-change rates. To isolate vertical tectonic rates, we use only those InSAR measurements made on material that was not Quaternary substrate, which is susceptible to nontectonic and seasonally varying ground motions. The InSAR residuals indicate significant uplift over the southern foothills of the active Mount Diablo anticlinorium, the Mission Hills stepover region of the Hayward and Calaveras faults, and the central and southern Santa Cruz Mountains located along a restraining bend of the San Andreas fault.

DOI

[6]
Ferretti A, Prati C, Rocca F.Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. Geoscience and Remote Sensing, IEEE transactions on, 2000,38(5):2202-2212.

[7]
Ferretti A, Prati C, Rocca F.Permanent scatterers in SAR interferometry[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2001,39(1):8-20.Abstract Temporal and geometrical decorrelation often prevents SAR interferometry from being an operational tool for surface deformation monitoring and topographic profile reconstruction. Moreover, atmospheric disturbances can strongly compromise the accuracy of the results. The authors present a complete procedure for the identification and exploitation of stable natural reflectors or permanent scatterers (PSs) starting from long temporal series of interferometric SAR images. When, as it often happens, the dimension of the PS is smaller than the resolution cell, the coherence is good even for interferograms with baselines larger than the decorrelation one, and all the available images of the ESA ERS data set can be successfully exploited. On these pixels, submeter DEM accuracy and millimetric terrain motion detection can be achieved, since atmospheric phase screen (APS) contributions can be estimated and removed. Examples are then shown of small motion measurements, DEM refinement, and APS estimation and removal in the case of a sliding area in Ancona, Italy. ERS data have been used

DOI

[8]
Ferretti A, Savio G, Barzaghi R, et al.Submillimeter Accuracy of InSAR Time Series[J]. Experimental Validation, 2007,4(5):1142-1153.ABSTRACT This paper presents the results of a blind experiment that is performed using two pairs of dihedral reflectors. The aim of the experiment was to demonstrate that interferometric synthetic aperture radar (InSAR) measurements can indeed allow a displacement time series estimation with submillimeter accuracy (both in horizontal and vertical directions), provided that the data are properly processed and the impact of in situ as well as atmospheric effects is minimized. One pair of dihedral reflectors was moved a few millimeters between SAR acquisitions, in the vertical and east-west (EW) directions, and the ground truth was compared with the InSAR data. The experiment was designed to allow a multiplatform and multigeometry analysis, i.e., each reflector was carefully pointed in order to be visible in both Envisat and Radarsat acquisitions. Moreover, two pairs of reflectors were used to allow the combination of data gathered along ascending and descending orbits. The standard deviation of the error is 0.75 mm in the vertical direction and 0.58 mm in the horizontal (EW) direction. GPS data were also collected during this experiment in order to cross-check the SAR results

DOI

[9]
Berardino P, Fornaro G, Lanari R, et al.A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2002,40(11):2375-2383.Abstract We present a new differential synthetic aperture radar (SAR) interferometry algorithm for monitoring the temporal evolution of surface deformations. The presented technique is based on an appropriate combination of differential interferograms produced by data pairs characterized by a small orbital separation (baseline) in order to limit the spatial decorrelation phenomena. The application of the singular value decomposition method allows us to easily "link" independent SAR acquisition datasets, separated by large baselines, thus increasing the observation temporal sampling rate. The availability of both spatial and temporal information in the processed data is used to identify and filter out atmospheric phase artifacts. We present results obtained on the data acquired from 1992 to 2000 by the European Remote Sensing satellites and relative to the Campi Flegrei caldera and to the city of Naples, Italy, that demonstrate the capability of the proposed approach to follow the dynamics of the detected deformations.

DOI

[10]
Lanari R, Mora O, Manunta M, et al.A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. Geoscience and Remote Sensing, 2004,42(7):1377-1386.

[11]
Hooper A.A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008,35(16):96-106.Abstract Synthetic aperture radar (SAR) interferometry is a technique that provides high-resolution measurements of the ground displacement associated with many geophysical processes. Advanced techniques involving the simultaneous processing of multiple SAR acquisitions in time increase the number of locations where a deformation signal can be extracted and reduce associated error. Currently there are two broad categories of algorithms for processing multiple acquisitions, persistent scatterer and small baseline methods, which are optimized for different models of scattering. However, the scattering characteristics of real terrains usually lay between these two end-member models. I present here a new method that combines both approaches, to extract the deformation signal at more points and with higher overall signal-to-noise ratio than can either approach alone. I apply the combined method to data acquired over Eyjafjallaj枚kull volcano in Iceland, and detect time-varying ground displacements associated with two intrusion events.

DOI

[12]
葛大庆,王艳,郭小方,等.基于相干点目标的多基线D-InSAR技术与地表形变监测[J].遥感学报,2008,11(4):574-580.

[ Ge D Q, Wang Y, Guo X F, et al.Surface deformation monitoring with multi-baseline D-InSAR based on coherent point target[J]. Journal of Remote Sensing, 2008,11(4):574-580. ]

[13]
Zhang Y, Zhang J, Wu H, et al.Monitoring of urban subsidence with SAR interferometric point target analysis: A case study in Suzhou, China[J]. International Journal of Applied Earth Observation & Geoinformation, 2011,13(5):812-818.Ground subsidence, mainly caused by over exploitation of groundwater and other underground resources, such as oil, gas and coal, occurs in many cities in China. The annual direct loss associated with subsidence across the country is estimated to exceed 100 million US dollar. Interferometric SAR (InSAR) is a powerful tool to map ground deformation at an unprecedented level of spatial detail. It has been widely used to investigate the deformation resulting from earthquakes, volcanoes and subsidence. Repeat-pass InSAR, however, may fail due to impacts of spatial decorrelation, temporal decorrelation and heterogeneous refractivity of atmosphere. In urban areas, a large amount of natural stable radar reflectors exists, such as buildings and engineering structures, at which radar signals can remain coherent during a long time interval. Interferometric point target analysis (IPTA) technique, also known as persistent scatterers (PS) InSAR is based on these reflectors. It overcomes the shortfalls in conventional InSAR. This paper presents a procedure for urban subsidence monitoring with IPTA. Calculation of linear deformation rate and height residual, and the non-linear deformation estimate, respectively, are discussed in detail. Especially, the former is highlighted by a novel and easily implemented 2-dimensional spatial search algorithm. Practically useful solutions that can significantly improve the robustness of IPTA, are recommended. Finally, the proposed procedure is applied to mapping the ground subsidence in Suzhou city, Jiangsu province, China. Thirty-four ERS-1/2 SAR scenes are analyzed, and the deformation information over 38,881 point targets between 1992 and 2000 are generated. The IPTA-derived deformation estimates correspond well with leveling measurements, demonstrating the potential of the proposed subsidence monitoring procedure based on IPTA technique. Two shortcomings of the IPTA-based procedure, e.g., the requirement of large number of SAR images and assumed linear plus non-linear deformation model, are discussed as the topics of further research.

DOI

[14]
薛禹群,张云,叶淑君,等.我国地面沉降若干问题研究[J].高校地质学报,2006,12(2):153-160.地面沉降主要有(1)由过量开采地下水引起的和(2)在新构造活动构造沉降的基础上,由开采 地下水、油气、地下热水形成的地面沉降两种类型.不仅不同的土层有不同的变形特点,在不同地点的同一土层也有不同的变形特点.同一地点同一土层在不同时期 的变形特点也不尽相同.建立数学模型时要根据土层实际变形特点分别建立相应的模型,才能模拟出真实的地面沉降情况.解决耦合问题和垂向、水平向尺度不同带 来的困难也是正确模拟必不可少的.

DOI

[ Xue Y Q, Zhang Y, Ye S J, et al.Research on the problems of land subsidence in China[J]. Geological Journal of China Universities, 2006,12(2):153-160. ]

[15]
张勤,赵超英,丁晓利,等.利用GPS 与InSAR研究西安现今地面沉降与地裂缝时空演化特征[J].地球物理学报,2009(5):1214-1222.西安孕育严重的地面沉降及地裂缝灾害,严重制约着城市的现代化发展,本文采用GPS精密定位和InsAR遥感差分技术对西安地面沉降和地裂缝进行变形监测与分析,获取了西安地面沉降与地裂缝整体变形现状的珍贵信息,通过对这些变形信息的研究分析,揭示了西安现今地面沉降与地裂缝时空演化特征和机理:随着停止或限采地下水,西安地面沉降量级由20世纪90年代中期的最大年沉降速率20~30 cm/a减少到不足10 cm/a,且超过60%的沉降区域的年沉降速率已由90年代中期的5~8 cm/a减少到不足2 cm/a;原有的沉降中心大部分已不存在或大大减小;地裂缝在时空活动与分布上与地面沉降存在明显的关联性;地面沉降和地裂缝随着西安高新区的建设向南、西南、东南逐步扩展.

DOI

[ Zhang Q, Zhao C Y, Ding X L, et al.Research on recent characteristics of spatio-temporal evolution and mechanism of xi′an land subsidence and ground fissure by using GPS and InSAR techniques[J]. Chinese Journal of Geophysics, 2009,5:1214-1222. ]

[16]
Qu F, Zhang Q, Lu Z, et al.Land subsidence and ground fissures in Xi'an, China 2005-2012 revealed by multi-band InSAR time-series analysis[J]. Remote Sensing of Environment, 2014,155:366-376.ABSTRACT Xi'an, China has been undergoing significant land subsidence along with ground fissure development. These geohazards have brought about severe damages to buildings, bridges and other facilities. In order to warn of and mitigate disasters, it is urgently necessary to obtain the latest rate, extent, and temporal evolution of land subsidence in Xi'an. With multiple SAR datasets as well as leveling, GPS and ground water level of aquifers, we study and map the spatial and temporal evolution of land subsidence and ground fissures over Xi'an. First, 62 synthetic aperture radar (SAR) images acquired by Envisat, ALOS, and TerrSAR-X during 2005–2012 are used to form three independent interferometric stacks to unveil the spatial and temporal variations of land subsidence and ground fissures by using the time-series interferometric synthetic aperture radar (InSAR) technique. GPS and leveling measurements are applied to calibrate the InSAR results. Precision of our InSAR annual subsidence results is less than 9 mm. We derive the east–west and vertical components of the observed land deformation in 2009 using descending and ascending InSAR observations, finding out that the horizontal component of land deformation cannot be ignored if the deformation is large or ground fissures are active. Second, four main land subsidence zones are detected in Xi'an, with an average subsidence rate of 50 mm/a during 2005–2012. Time-series InSAR results indicate that land subsidence rates in Xi'an increased by 200% from 2005–2007 to 2008–2010, extending existing ground fissures. Third, InSAR-derived land subsidence correlates with the change in ground water level, and seasonal variations in subsidence correlate with changes in ground water pumping. Last, the consistency on the spatial–temporal distribution variation between ground fissures and land subsidence could be drawn from the time series results and profile analysis. Shapes of subsiding zones follow the general trends of mapped ground fissures and main faults in an ENE direction. Changes in the subsidence gradient are also observed over most of the ground fissures and faults. Subsidence-triggered fissures can cause localized surface displacements, aggravate localized subsidence, discontinue the integrity of ground water flow, and limit the horizontal spread of subsidence funnels. With continuing mass construction projects in Xi'an, monitoring ground deformation with satellite InSAR therefore can provide efficient means to image land subsidence, movements of fissures and faults, and the associated geohazards.

DOI

[17]
Chen B, Gong H, Li X, et al.Spatial correlation between land subsidence and urbanization in Beijing, China[J]. Natural Hazards, 2015,75(3):2637-2652.The large-scale construction of buildings, extensive road and rail networks, and increased traffic flow associated with urbanization has the potential to cause land subsidence. Land subsidence caused by urbanization is an increasingly significant problem in Beijing, China; therefore, it is important to investigate the relationship between urbanization and land subsidence. Landsat TM images covering the Beijing plain were used to acquire spatial changes information of built-up areas by calculating an index-based built-up index (IBI). We used ENVISAT Advanced Synthetic Aperture Radar data acquired from 2003 to 2009 and persistent scatterers for SAR interferometry (PSI) technology to estimate land subsidence. Geographic information systems spatial analysis method was used to identify the relationship between the settlement rate and the IBI value for three different sampling units. The result showed that it was a positive correlation between construction density and land subsidence; for land subsidence, the effect from the combination of high-density building clusters and extensive transportation networks was more significant than the presence of buildings alone. However, there may be a delay between the completion of building construction and the development of land subsidence. Copyright Springer Science+Business Media Dordrecht 2015

DOI

[18]
Chen B, Gong H, Li X, et al.Spatial-temporal characteristics of land subsidence corresponding to dynamic groundwater funnel in Beijing municipality, China[J]. Chinese Geographical Science, 2011,21(6):753-764.Due to long-term over-exploitation of groundwater in Beijing Municipality,regional groundwater funnels have formed and land subsidence has been induced.By combining a groundwater monitoring network,GPS monitor-ing network data,radar satellite SAR data,GIS and other new technologies,a coupled process model based on the dy-namic variation of groundwater and the deformation response of land subsidence has been established.The dynamic variation of groundwater funnels and the land subsidence response process were analyzed systematically in Beijing.Study results indicate that current groundwater funnel areas are distributed mainly in the southwest of Shunyi District,the northeast of Chaoyang District and the northwest of Tongzhou District,with an average decline rate of groundwa-ter level of 2.66 m/yr and a maximum of 3.82 m/yr in the center of the funnels.Seasonal and interannual differences exist in the response model of land subsidence to groundwater funnels with uneven spatial and temporal distribution,where the maximum land subsidence rate was about-41.08 mm/yr and the area with a subsidence rate greater than 30 mm/yr was about 1637.29 km2.Although a consistency was revealed to exist between a groundwater funnel and the spatial distribution characteristics of the corresponding land subsidence funnel,this consistency was not perfect.The results showed that the response model of land subsidence to the dynamic variation of groundwater was more revealing when combining conventional technologies with InSAR,GIS,GPS,providing a new strategy for environmental and hydrogeological research and a scientific basis for regional land subsidence control.

DOI

[19]
张学东,葛大庆,吴立新,等.基于相干目标短基线InSAR的矿业城市地面沉降监测研究[J].煤炭学报,2012,37(10):1606-1611.针对煤矿区非线性地表沉降特征,探讨了相干目标短基线InSAR用于矿业城市地面沉降监测研究的方法与效果。该方法以相干目标短基线差分相位时序分析为技术核心,综合相干系数阈值法和振幅离散指数最大化提取有效相干目标,以此构建相干目标Delaunay三角网,进而分析相邻目标的时序相位差,根据差分相位构成中各分量的时空特性,对短基线条件下干涉相位序列进行逐个分离,最终获取地表下沉速率和下沉累积量。以唐山市为例,选用2004—2010年27景ENVISAT ASAR影像进行分析,查明了唐山市城区地面沉降量及其空间分布特征,最大年沉降速率达到-46.8 mm/a,主城区沉降速率普遍低于-11 mm/a。连续动态监测也显示了矿区开采沉陷不同阶段的地面沉降特征。

[ Zhang X D, Ge D Q, Wu L X, et al.Study on monitoring land subsidence in mining city based on coherent target small-baseline InSAR[J]. Journal of China Coal Society, 2012,37(10):1606-1611. ]

[20]
Lefever D W.Measuring geographic concentration by means of the standard deviational ellipse[J]. American Journal of Sociology, 1926:88-94.Many social problems involve the geographic location of the social factors concerned. To know the characteristics of the areas in which these factors appear is to throw light on the entire situation. A statistical method for measuring the concentration of unit locations on a "spot map" is indicated. The symbolism has been kept parallel, as far as possible, to that used in the statistics of frequency distributions.

DOI

[21]
Yuill R S.The standard deviational ellipse: An updated tool for spatial description[J]. GeografiskaAnnaler. Series B. Human Geography, 1971:28-39.Resumo: A presente investiga0400o busca informar a prática sistemática do exercício físico frente a quest01es relacionadas à saúde, entre ingressantes na Universidade de Campinas, alunos da Disciplina Prática Desportiva ? EF 101-103. De universo de 723 pessoas, observa-se amostra rand00mica de 246, com manuten0400o da propor0400o relativa dos respectivos cursos. A aplica0400o de questionário constituído por doze quest01es permite conhecer, além de variáveis epidemiológicas descritivas correntes (como sexo, idade), seu grau de sedentarismo. A analise associada entre seus alunos, segundo nível de exercício físico (sedentário, intermediário e ativo) e suas especialidades quanto ao estado de saúde procede-se no sentido de investigar a atua0400o do exercício físico em contraposi0400o aos efeitos do sedentarismo, além de identifica0400o dos interesses dos mesmos., objetivos e expectativas em rela0400o à referida atividade acadêmica. Os dados quantitativos registrados e processados em instrumentos específicos, geraram resultados expressados segundo procedimentos estatísticos descritivos de apresenta0400o tabular, distribuídos com freqüência absolutas e relativas de resposta. Os resultados obtidos permitem apontar para apreens00o dos seguintes aspectos: 1) Os estudantes expressam-se sedentários, embora tenham mencionado alta import09ncia a atividade física. 2)As alunas expressam-se mais sedentárias do que os rapazes. 3) Apresentam dificuldade de horário como motivo de n00o pratica de atividade física...Observa0400o: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital Abstract: Not informed

DOI

[18]
Furfey P H.A note on Lefever's "standard deviational ellipse"[J]. American Journal of Sociology, 1927:94-98.

[23]
Warntz W, Neft D.Contributions to a statistical methodology for areal distributions[J]. Journal of Regional Science, 1960,2(1):47-66.First page of article

DOI

[24]
Bachi R.Standard distance measures and related methods for spatial analysis[J]. Papers in Regional Science, 1962,10(1):83-132.No Abstract available for this article.

DOI

[25]
Scott L M, Janikas M V.Spatial statistics in ArcGIS[M]//Handbook of applied spatial analysis. Springer Berlin Heidelberg, 2010:27-41.

[26]
赵媛,杨足膺,郝丽莎,等.中国石油资源流动源-汇系统空间格局特征[J].地理学报,2012,2012,67(4):455-466.以中国石油(特指原油)资源流动为研究对象,把中国省级行政单元抽象为石油资源流动节点,从1985-2009年中选取5个特征时点,根据各流动节点石油自给能力及流动比率,将各特征时点的石油流动省份划分为源地、汇地和交流地3大流动职能类型,并将主要石油进口港(含陆上口岸)作为进口石油源地;分别利用重心和标准差椭圆分析源地系统和汇地系统空间分布格局的集中与离散趋势,得出中国石油资源流动源—汇系统空间格局的位移和形变特征。结果表明:①源地系统重心位于中国东偏北部,在经历了1985-1995年的西北向移动后,1995-2009年大幅向西南偏移,南北方向的移动速度快于东西方向;汇地系统重心偏于中国中东部,移动幅度相对较小,1985-1999年呈南北向移动、1999-2003年呈东西向移动,最终快速向西南方向偏移。②从标准差椭圆分析来看,源地系统的空间分布先趋于分散后又趋于集中,由东北—西南的分布格局逐渐趋向于西北—东南的分布格局;汇地系统空间分布格局相对较为稳定,小幅极化后略趋分散,呈较为稳定的东北—西南分布。③中国石油资源流动的平均方向由东北—西南向偏转为南北向,平均运距呈下降趋势,主导流向由东北—西南向逐步转变为西北—东南向和东西向输流并存。

DOI

[ The evolution of spatial displacement pattern of China's crude oil flow source-sink system[J]. Acta Geographica Sinica, 2012,67(4):455-466. ]

文章导航

/