激光点云与光学影像配准:现状与趋势
作者简介:张 靖(1982-),男,博士,讲师,研究方向为点云数据处理。E-mail:jing.zhang@whu.edu.cn
收稿日期: 2016-05-30
要求修回日期: 2016-12-20
网络出版日期: 2017-04-20
基金资助
国家自然科学基金青年科学基金项目(41301367)
高等学校博士点专项科研基金(20130141120066)
地理空间信息工程国家测绘地理信息局重点实验室开放研究基金项目(201309)
Registration between Laser Scanning Point Cloud and Optical Images: Status and Trends
Received date: 2016-05-30
Request revised date: 2016-12-20
Online published: 2017-04-20
Copyright
张靖 , 江万寿 . 激光点云与光学影像配准:现状与趋势[J]. 地球信息科学学报, 2017 , 19(4) : 528 -539 . DOI: 10.3724/SP.J.1047.2017.00528
LiDAR point cloud and optical imagery are different types of remote sensing data source. They have some unique merits, respectively, that are complementary to each other. Integrating these two dataset has significant value in many applications. However, as the existence of various error sources, point cloud and optical imagery are usually misaligned. For the purpose of further integrated processing, the registeration of point cloud and imagery is a preliminary step which will align them into a unified geo-reference frame. Although after decades of research, this registration problem is far from solved. This paper gave a detailed survey of registration between point cloud and optical images. To obtain thorough understanding of this problem, a general mathematical paradigm for the registration was established firstly. By analyzing the mathematical paradigm, we indicated three main difficulties in this registration problem, and then definitely divided the whole workflow of registration into three key parts which are named: (1) the acquisition of corresponding observations, (2) the selection of transformation models; (3) the optimization of unknowns. Afterwards, we reviewed a series of representative registration methods from the above three aspects. In the acquisition of corresponding observations, the existing methods were classified into area-based method, feature-based method and multiple-view geometry based method. In the stage of transformation models selection, frequently-used models were classified into sensor-based models and empirical models. In the unknowns’ optimization part, two principal optimization methods termed local optimization and global optimization were introduced and the general usages of these optimization in registration were described. Furthermore, we summarized the mentioned registration methods and gave a detailed comparison and analysis including the advantages / shortcomings and the applicable scope. At last, the trends of registration development were forecasted.
Key words: optical image; LiDAR; point cloud; registration; literature review
Tab.1 The comparison of correspondence extractions表1 观测值获取方法比较 |
方法 | 数据源 | 特征提取 | 特征描述 | 相似性测度 | 鲁棒性 | 配准精度 | 备注 | |
---|---|---|---|---|---|---|---|---|
基于区域的方法 | 空间域方法 | 光学影像,强度影像或DSM | 不需要 | 不需要 | SAD,SSD,NCC,LSCC | 较差,对灰度差异敏感 | 高 | 速度较慢,适用于机载数据 |
频率域方法 | 光学影像,强度影像或DSM | 不需要 | 不需要 | 相位相关 | 对噪声和灰度差异具有一定鲁棒性 | 很高 | 计算速度快,适用于机载数据 | |
统计方法 | 光学影像,强度影像或DSM | 不需要 | 不需要 | 互信息 | 对灰度鲁棒性好 | 高 | 需要较好的初值,适用于机载、车载和地面固定站 | |
基于特征的方法 | 点特征 | 光学影像,强度影像或DSM | 检测角点或斑点 | 基于邻域内的灰度或几何结构的描述子 | KNN或NCC | 对灰度差异和几何变形鲁棒 | 高 | 自然场景和人工场景内都存在丰富的点特征,适应范围广 |
线特征 | 光学影像,强度影像或DSM | 检测边缘,边缘编组 | 几何特征描述子 | 基于距离、角度等几何关系的判断 | 对灰度差异和几何变形鲁棒 | 高 | 适合城市区域,常用于车载数据和地面固定站数据 | |
面特征 | 光学影像,激光点云或DSM | 光学影像上检测纹理均质区域,点云中检测平面 | 不需要 | 基于距离判断 | 好 | 低 | 适合进行粗配准 | |
多视几何配准方法 | 光学影像序列,激光点云 | 光学影像序列中恢复三维信息 | 不需要 | 基于ICP的对应点提取 | 好 | 高 | 需要较好的初值,常于车载数据 |
Tab.2 The comparison of transformation models (NA for not available, * for available )表2 几何转换模型比较(NA表示不需要或不适用,*表示适用) |
模型 | 所需附加数据 | 精度 | 适用平台 | 适用领域 | ||
---|---|---|---|---|---|---|
机载 | 车载 | 地面 | ||||
共线方程 | 相机参数 | 高 | * | * | * | 大部分应用领域 |
直接线性变换 | NA | 较高 | * | * | * | 城市场景 |
鱼眼相机模型 | 相机参数 | 高 | NA | * | * | 城市或室内场景 |
全景成像模型 | 全景模型参数(某些方法需要相机参数) | 较高 | NA | * | * | 城市或室内场景 |
多项式模型 | NA | 一般,和对应点数量和分布相关 | NA | NA | * | 对精度要求不高的单片配准应用 |
薄板样条模型 | NA | 高,但需要大量对应点 | NA | NA | * | 基于地面平台的高精度纹理映射 |
Tab.3 The comparison of optimization methods表3 优化方法比较 |
优化方法 | 适用问题 | 优化能力 | 计算效率 |
---|---|---|---|
局部优化 | 适用于同名观测值已确定,仅需要对转换函数进行优化求解的情况 | 能够得到局部最优解,易受初值的影响 | 计算速度快 |
全局优化 | 能够同时优化同名观测值提取和转换函数估计 | 能够得到全局最优解 | 计算速度较慢 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
[
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
[
|
[20] |
[
|
[21] |
[
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
[
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
[
|
[39] |
|
[40] |
[
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
[
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
[
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
[
|
[60] |
[
|
[61] |
[
|
[62] |
|
[63] |
[
|
[64] |
[
|
[65] |
[
|
[66] |
|
[67] |
[
|
[68] |
[
|
[69] |
|
[70] |
[
|
[71] |
|
[72] |
|
[73] |
[
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
/
〈 |
|
〉 |